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Recent optomechanical experiments have observed nonclassical properties in macroscopic mechanical
oscillators. A key indicator of such properties is the asymmetry in the strength of the motional sidebands
produced in the probe electromagnetic field, which is originated by the noncommutativity between the
oscillator ladder operators. Here we extend the analysis to a squeezed state of an oscillator embedded in an
optical cavity, produced by the parametric effect originated by a suitable combination of optical fields. The
motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric
features revealing and quantifying the quantum component of the squeezed oscillator motion.
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The quantum description of the microscopic world is
verified with ever increasing accuracy, and more and more
common and indispensable technologies are based on
intrinsically quantum principles. On the other hand, some
features predicted by quantum mechanics are in contrast
with the everyday experience, in particular those originated
by entanglement and by the Heisenberg uncertainty princi-
ple, encoded in the noncommutativity of some measurable
operators. It is therefore not only interesting from the
scientific and technological point of view, but also useful
for extending our intuitive grasp of quantum devices, to
verify how such behaviors are conserved and/or modified in
the transition between microscopic and macroscopic reality.
A relevant contribution in this direction is being given by

optomechanical experiments [1] that allowed us, in the last
decade, to realize systems of macroscopic mechanical
oscillators exhibiting nonclassical properties. A key exam-
ple is the asymmetry in the motional sidebands generated in
an electromagnetic probe field [2–7]. As far as spurious
experimental features are avoided [8–10], this asymmetry
becomes a footprint of the quantum motion of the oscil-
lator, being originated by the noncommutativity between its
ladder operators [11–13]. The sideband asymmetry is
measurable whenever the thermal agitation is weak enough,
and therefore for low phonon numbers.
A further step on the path highlighting quantum features

in macroscopic systems is the realization of strongly
nonclassical states. In this work we turn our attention to

the squeezed state of a macroscopic mechanical oscillator
embedded in an optical cavity and identify a clear signature
of its quantum nature.
The coordinate expressing the position of a harmonic

oscillator can be written as x ¼ 2xzpf ½X cosðΩmtþ ϕÞþ
Y sinðΩmtþ ϕÞ�, where xzpf is the ground state spread of

the position (i.e., xzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩm

p
where m is the mass

and Ωm the frequency of the oscillator). The quadratures X
and Y are slowly varying if the oscillator is damped. In a
thermal state, the variance of the quadratures is
hX2i ¼ hY2i ¼ ð2n̄th þ 1Þ=4, where n̄th is the mean ther-
mal occupation number, for any choice of the phase ϕ. The
mechanical interaction of the oscillator with a readout
electromagnetic field produces in the latter motional side-
bands around its main field frequency, displaced by �Ωm,
and proportional, respectively, to b̂ ¼ X þ iY (anti-Stokes
sideband) and b̂† ¼ X − iY (Stokes sideband). In a thermal
state, the variances of b̂ and b̂† are, respectively, hb̂†b̂i ¼
n̄th and hb̂b̂†i ¼ n̄th þ 1 [14]. In cavity optomechanics
experiments, the electromagnetic field competes with the
thermal environment yielding, in appropriate conditions, a
larger overall coupling rate Γeff , a mechanical resonance
frequency modified by the optical spring effect, and a lower
mean phonon number n̄ [1,15]. The ratio between Stokes
and anti-Stokes sidebands can now be written as R ¼
ðn̄þ 1Þ=n̄ and, for low enough n̄, a deviation from unity of
R becomes measurable, providing a clear signature of the
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smooth transition between the classical motion and the
quantum behavior. In the case of continuous measurements
on a weakly coupled oscillator (with Γeff ≪ Ωm), the
observed variables (either x, or the quadratures, or the
sidebands) exhibit Lorentzian spectra with width Γeff ,
and their variance can be evaluated by integrating over
the respective spectral peaks.
In the absence of an intrinsic reference phase, all the

quadratures (for any choice of ϕ) are obviously indistin-
guishable. On the other hand, a phase-sensitive interaction
can break such symmetry and provide, e.g., different
variances in two orthogonal quadratures. In this case the
oscillator is said to be in a squeezed state. A scheme that
allowed us to obtain it in cavity opto-mechanical experi-
ments is the so-called reservoir engineering [16,17]. In this
configuration, unbalanced fields are detuned, respectively,
by �Ωm from the cavity resonance. Because of the
interference between the noise sidebands of the two fields,
the electromagnetic reservoir seen by the mechanical
oscillator is modified in a phase-sensitive way. When its
effect dominates over the thermal one, the result is a
squeezed oscillator. It has been observed in microwave
experiments with cooled nano oscillators [18–21], where
the variance in one quadrature was indeed reduced below
that of the ground state (i.e., hX2i < 1=4 for a particular
value of ϕ). This noise reduction can play an important
role, e.g., in optimizing the sensitivity of the oscillator used
as a quantum sensor. However, we point out that the
motional sidebands remain unmodified and a more direct
evidence of nonclassical behavior is lacking.
A different possibility to produce a squeezed state of the

oscillator is the modulation of its spring constant at twice its
resonance frequency (parametric modulation) [22]. This
scheme has been implemented in several experiments with
thermal oscillators, including cavity optomechanical setups
where a modulation of the optical spring is obtained by
acting on the light intensity or frequency [23,24]. The
variances in two, suitably chosen, orthogonal quadratures
are altered, respectively, by factors of 1=ð1þ sÞ and
1=ð1 − sÞ, where s is the parametric gain. The correspond-
ent spectra keep Lorentzian shapes with modified widths,
given, respectively, by Γþ ¼ Γeffð1þ sÞ (overdamped
quadrature) and Γ− ¼ Γeffð1 − sÞ (underdamped quadra-
ture). It is thus interesting to consider what happens to the
spectra of the motional sidebands that are somehow given
by linear combinations of the two quadratures. The
spectrum of each sideband turns out to be composed of
two Lorentzian curves, with width Γþ and Γ−. More
relevant, the areas of this two Lorentzian components
are different in the two sidebands, with ratios given by

Rþ ¼ n̄þ 1þ s=2
n̄ − s=2

; ð1Þ

R− ¼ n̄þ 1 − s=2
n̄þ s=2

; ð2Þ

respectively, for the broader (Rþ) and narrower (R−)
components. If the oscillator motion is described by
classical (commuting) variables, the two sidebands’ spectra
must be identical, and the same happens in a quantum
description of a “classical” (i.e., thermal noise dominated,
with n̄ ≫ 1) oscillator. On the other hand, for moderately
low n̄ the sideband ratios Rþ and R− differ not only from
unity, but also from the ratio R measurable without para-
metric squeezing. Namely, the ratio is stronger for the
broadened Lorentzian component, while it approaches the
unity for the narrowed component as s → 1 (i.e., close to
the parametric instability threshold). Therefore, a purely
quantum effect can be put into evidence even for a state
having a variance exceeding that of the ground state in any
quadrature and, besides thermal noise, even for states that
are not of minimal uncertainty (i.e., with hX2ihY2i > 1=16)
as those created by parametric squeezing.
In the following, we describe an experimental study of

this effect, and we show that a nonclassical state of the
macroscopic mechanical oscillator is realized through
interaction with optical fields.
The experimental setup is sketched in Fig. 1. The

measurements are performed on a circular SiN membrane
with a thickness of 100 nm and a diameter of 1.64 mm,
supported by a silicon “loss shield” structure [25–28]. In
this work we exploit the (0,2) mechanical mode at
∼530 kHz, having a quality factor of 6.4 × 106 at cryo-
genic temperature (mechanical linewidth 0.08 Hz).
The oscillator is placed in a Fabry-Perot cavity of length

4.38 mm, at 2 mm from the cavity flat end mirror, forming a
“membrane-in-the-middle” setup [29], where the single-
photon coupling rate with the (0,2) mechanical mode is
g0=2π ≃ 30 Hz. The input coupler is concave with a radius

FIG. 1. Sketch of the experimental setup (see text) and
conceptual scheme of the field frequencies. The LO is placed
on the blue side of the probe (ωp) and detuned by ΔLO ≪ Ωm,
therefore the Stokes lines are on the red side of the LO, while the
anti-Stokes lines are on the blue side. In the heterodyne spectra,
they are located, respectively, at Ωm þ ΔLO (Stokes) and Ωm −
ΔLO (anti-Stokes).
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of 50 mm, originating a waist of 70 μm. The cavity
finesse and linewidth are, respectively, 20 000 and κ ¼
1.7 MHz × 2π. The optomechanical cavity is cooled down
to ∼7 K in a helium flux cryostat, yielding a thermal
occupation number of 2.6 × 105 for the considered
mechanical mode. More details on the optomechanical
system and its characterization are reported and discussed
in Ref. [30].
The light of a Nd:YAG laser is filtered by a Fabry-Perot

cavity (linewidth of 66 kHz) and split into three beams,
whose frequencies are controlled by means of acousto-
optic modulators (AOM) and sent to the experimental
bench by optical fibers [Fig. 1(a)]. The probe beam, at
frequency ωp, is kept resonant with the optomechanical
cavity (OMC) using the Pound-Drever-Hall (PDH) detec-
tion, with a servo loop exploiting AOM1 to follow fast
fluctuations and a piezoelectric transducer to compensate
for long-term drifts of the cavity length. About 2 μW of the
reflected probe are sent to the PDH detection, while most of
the probe light (∼10 μW) is combined with the local
oscillator (LO) beam (∼2 mW) in a balanced detection
(BHD). The LO frequencyωLO is shifted with respect to the
probe (namely, by ΔLO=2π ¼ 11 kHz), to realize a low-
frequency heterodyne detection [31]. The output of the
BHD is acquired and also sent to a lock-in amplifier and
demodulated at Ωpar=2 (where Ωpar is defined later). The
two quadrature outputs of the lock-in are simultaneously
acquired and off-line processed.
The third beam (pump beam), orthogonally polarized

with respect to the probe, is also sent to the cavity. Its field
contains a main, cooling tone at a frequency ωcool red
detuned from the cavity resonance, and a modulation tone
at a frequency ωpar, blueshifted with respect to ωcool. The
two tones are obtained by driving the AOM2 with the sum
of two radiofrequency signals. To realize the parametric
drive of the oscillator, the frequency difference between the
two tones is Ωpar ¼ ðωpar − ωcoolÞ≡ 2Ωm. To obtain com-
parable oscillator spectra in the absence of coherent para-
metric drive, we further shift the modulation tone by
∼12 kHz, i.e., by a quantity larger than the mechanical
width (that is typically Γeff=2π ≃ 4 kHz), but much smaller
than the cavity width. The optomechanical effect of the
modulation tone is thus maintained almost constant, but the
coherent effect of the two tones on the oscillator is avoided.
During the measurements, the two values of the modulation
tone frequency are alternated every 5 s and the correspond-
ing periods extracted from the acquired time series are
analyzed separately. In this way, we can compare the two
situations (with and without coherent parametric drive)
keeping the same system conditions, avoiding the effect of
possible long term drifts.
All the radiofrequency sinusoidal signals used in the

experiment, for driving the AOMs and as reference in the
lock-in amplifier, are kept phase coherent. The system thus
realizes a phase-sensitive heterodyne detection.

Typical heterodyne spectra are shown in Figs. 2(a), 2(c),
together with the corresponding spectra of two orthogonal
quadratures [Figs. 2(b), 2(d)]. For the latter, the demodu-
lation phase is chosen in order to produce maximally
squeezed quadratures in the case of resonant paramet-
ric drive.
The spectra shown in the upper panels [Figs. 2(a), 2(b)]

are obtained without coherent parametric effect. The
heterodyne spectrum consists of the two motional side-
bands, separated by 2ΔLO, whose signal shapes are fitted by
Lorentzian curves having the same width Γeff . The ratio R
of their areas, corrected for the residual probe detuning as
described in Ref. [30], allows us to extract the oscillator
occupation number n̄ according to R ¼ 1þ 1=n̄. As shown
with green symbols in Fig. 3, R remains almost constant
when varying the relative strength of the pump tones.
A theoretical curve, based on independently measured
parameters, shows indeed a weak dependence due to the
different cooling efficiency of the two pump tones. The
agreement of this curve with the experimental data is good,
and an extensive characterization of our system [30] further
confirms the reliability of the measurement of n̄.
In the spectra of each quadrature [Figs. 2(b), 2(d)], the

mechanical peak is visible at frequencies around Ω ¼ ΔLO,
and is originated by the superposition of the two motional
sidebands. Each spectrum is fitted by the sum of two equal
Lorentzian shapes centered at �ΔLO:

SðΩÞ¼σ20

�
Γ=2

ðΩ−ΔLOÞ2þðΓ=2Þ2þ
Γ=2

ðΩþΔLOÞ2þðΓ=2Þ2
�
:

ð3Þ

Without parametric effect Fig. 2(b), the Lorentzian curves
fitting the two quadratures turn out to be equal within
the statistical uncertainty, and their width matches Γeff
extracted from the corresponding heterodyne spectra. On
the other hand, in the case of resonant parametric drive, the
spectra of the two quadratures [Fig. 2(d)] become, respec-
tively, broader and narrower with respect to the previous
case. The fitting function remains the same (3), but with
different areas (σ2X;Y) and widths (ΓX;Y) for the two
quadratures. The variances of the two quadratures, nor-
malized to σ20, are shown in Fig. 4 as a function of the ratio
between modulation and cooling tones, keeping a constant
total pump power. Dashed lines show the expected behav-
iors, i.e., respectively, 1=ð1þ sÞ and 1=ð1 − sÞ, where the
parametric gain s is calculated using the measured pump
tones ratio and detuning, and the cavity width κ. It can be
expressed as s ¼ Γpar=Γeff , with [32]

Γpar ¼
4g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵcð1 − ϵcÞ

p
Δpump

Δ2
pump þ κ2=4

ð4Þ

and
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Γeff ¼ Γmþ g2κ
�

ϵc
Δ2

pumpþ κ2=4
−

ϵc
ðΔpump− 2ΩmÞ2þ κ2=4

þ 1− ϵc
ðΔpumpþ 2ΩmÞ2þ κ2=4

−
1− ϵc

Δ2
pumpþ κ2=4

�

(g is the total optomechanical coupling strength of the
pump beam, ϵc is the ratio between cooling tone power and
total pump power, Δpump is the mean detuning of the pump
tones with respect to the cavity resonance, and Γm is the
mechanical width in the absence of optomechanical
effects). We stress that in the expression of s, the opto-
mechanical coupling g disappears, eliminating the neces-
sity of its, not obvious, evaluation. The shown theoretical
lines are calculated with no free parameters, and we remark
on their excellent agreement with the experimental data.
The described imbalance between the fluctuations of the

two quadratures is the characteristics of a squeezed state,
but distinguishing a classical (thermal) state from a quan-
tum state on this basis is not straightforward. The quali-
tative behavior is the same, therefore an accurate absolute
calibration of the displacement variance and its comparison
with that of the ground state are necessary. In the absence of
parametric drive, the measured occupation number is here

n̄ ¼ 5.8, therefore the variance in each quadrature is still
∼12 times larger than in the ground state. At the maximum
displayed squeezing, σ2Y is reduced by a factor of 0.66,
remaining well above that of the ground state. However, as
we will show, the heterodyne spectrum already provides a
direct quantum signature of the squeezed state. This is the
most important result of our work. The spectral shape of
each motional sideband departs from a simple Lorentzian
peak, and it is indeed fitted by the sum of two Lorentzian
curves with the same center, but different amplitudes and
widths Fig. 2(c). For the fitting procedure on the pair of
motional sidebands we have used four independent
Lorentzian amplitudes, and two widths written as Γþ ¼
Γeffð1þ sÞ and Γ− ¼ Γeffð1 − sÞ, where Γeff is fixed to the
value derived from the corresponding spectra in the absence
of resonant parametric drive. Γþ and Γ− agree, within the
statistical uncertainty, respectively, with ΓY and ΓX.
Moreover, the parametric gain s obtained from the fitted
Lorentzian widths is in agreement with its estimate
extracted from the variances of the two quadratures. This
is displayed in Fig. 4, where we show with circles the
values of (1þ s) and (1 − s) given by the widths of the
heterodyne spectra. We remark here the overall coherence
between measurements of the variance in the quadratures
(squares), measurements of the widths of the Lorentzian

FIG. 2. (a),(c) Heterodyne spectra (without demodulation) around the (0,2) membrane mode at Ωm=2π ≃ 530 kHz, (a) without
parametric drive and (c) with parametric drive. In (a) the spectrum is fitted by Lorentzian curves (solid line). In (c) the fitting function
(dark green line) is the superposition of a broad and a narrow Lorentzian shape, whose contributions are shown with blue and red lines.
(b),(d) Spectra of the fluctuations in two quadratures, obtained by phase-sensitive demodulation of the heterodyne signal at Ωpar=2,
(b) without parametric drive and (d) with parametric drive. In (b) the two spectra (dark and light green symbols) are not distinguishable,
and one single Lorentzian fit is shown (solid line). In (d) the two spectra (orange and blue symbols) are fitted with different Lorentzian
curves (red and blue solid lines). The full vertical scales correspond, respectively, to 2 Hz2=Hz (a),(b), 4 Hz2=Hz (c), 8 Hz2=Hz (d).
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components in the heterodyne spectra (circles), and the
theoretical model (dashed lines).
The four areas of the Lorentzian components allow us to

calculate one sideband’s asymmetry R− for the narrower
Lorentzian peak, and one Rþ for the broader peak. These
ratios are plotted in Fig. 3 as a function of the parametric
gain s. The theoretical spectra of the Stokes and anti-Stokes
sidebands are proportional, respectively, to [32]

Sb̂†b̂† ¼
Γeff

2

�
1þ n̄ − s=2
Ω2 þ Γ2

−=4
þ 1þ n̄þ s=2

Ω2 þ Γ2þ=4

�
; ð5Þ

Sb̂ b̂ ¼
Γeff

2

�
n̄þ s=2

Ω2 þ Γ2
−=4

þ n̄ − s=2
Ω2 þ Γ2þ=4

�
: ð6Þ

The ratios between the areas of the broad and narrow
Lorentzian components give the expressions (1), (2). The
latter theoretical curves are also traced in Fig. 3, without
free-fitting parameters. The agreement with the experimen-
tal measurements is an indication that the overall under-
standing of the system is correct. Even with a moderately
warm oscillator the analysis of the motional sidebands
allows us to extract and explore the quantum component of
the motion of the mechanical oscillator in a squeezed state.
These results show that, as it happens for the thermal

states of the oscillator, even for the squeezed state the
transition between classical and quantum behavior is
smooth, and a nonclassical squeezing indicator is in
principle measurable at any temperature. In other words,

the quantum dynamics is present even in macroscopic
oscillators dominated by thermal noise. It is, however,
interesting to consider what should happen when the
fluctuations in the squeezed quadrature are reduced
below those of the ground state. This occurs for
ð2n̄þ 1Þ=ð1þ sÞ < 1, i.e., for s > 2n̄. From Eq. (6) we
see that the broad Lorentzian contribution to the anti-Stokes
sideband becomes negative (even if, of course, the overall
spectral density remains positive for any Ω). This is a
threshold providing a clear indication that one is entering
the bona fide quantum squeezing regime, without the
necessity of absolute calibrations (we stress however that
the increased sideband asymmetry is already a per se
quantum feature). The stationary parametric drive is stable
for s < 1, therefore the above condition requires an initial
occupation number n̄ < 0.5. For thermal oscillators, several
techniques have been conceived and demonstrated to
overcome the parametric instability threshold, based on
weak measurements and feedback [23,24,33–36]. The
extension of our analysis to this regime, as well as to
the evolution of nonstationary squeezed states [37], would
provide additional insight to the quantum behavior of
macroscopic mechanical systems, particularly useful for
developing new protocols in the field of quantum sensing.

Research performed within the Project QuaSeRT funded
by the QuantERA ERA-NET Cofund in Quantum
Technologies implemented within the European Union’s
Horizon 2020 Programme. The research has been partially
supported by INFN (HUMOR project).

FIG. 4. Variance in the X (orange squares) and Y (cyan squares)
quadratures, normalized to σ20, as a function of the ratio between
modulation and cooling tones, for constant total pump power.
Dashed lines show the theoretical behavior. Magenta and blue
circles are the correspondent expected values, calculated, re-
spectively, as 1=ð1 − sÞ and 1=ð1þ sÞ, where s is extracted from
the width of the broad and narrow Lorentzian contributions in the
heterodyne spectra. Error bars reflect the standard deviations in 5
consecutive independent measurements, each one lasting 100 s.

FIG. 3. Green symbols: sideband asymmetry R with no para-
metric drive (i.e., with detuned modulation tone), for increasing
power in the modulation tone. Sideband ratios Rþ (blue circles)
and R− (red circles) with coherent parametric drive. The values of
s in the abscissa are extracted from the fitted widths Γþ ¼
Γeffð1þ sÞ and Γ− ¼ Γeffð1 − sÞ. Dashed lines show the corre-
sponding theoretical behavior, with shadowed areas given by the
uncertainty in the system parameters (in particular, 5% in the
cavity width and 0.5 K in the temperature). Error bars reflect the
standard deviations in 5 consecutive independent measurements,
each one lasting 100 s. The total pump power is kept constant
during all the measurements.
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