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Quantum error correction is expected to be essential in large-scale quantum technologies. However, the
substantial overhead of qubits it requires is thought to greatly limit its utility in smaller, near-term devices.
Here we introduce a new family of special-purpose quantum error-correcting codes that offer an
exponential reduction in overhead compared to the usual repetition code. They are tailored for a common
and important source of decoherence in current experiments, whereby a register of qubits is subject to phase
noise through coupling to a common fluctuator, such as a resonator or a spin defect. The smallest instance
encodes one logical qubit into two physical qubits, and corrects decoherence to leading-order using a
constant number of one- and two-qubit operations. More generally, while the repetition code on n qubits
corrects errors to order tOðnÞ, with t the time between recoveries, our codes correct to order tOð2nÞ. Moreover,
they are robust to model imperfections in small- and intermediate-scale devices, where they already provide
substantial gains in error suppression. As a result, these hardware-efficient codes open a potential avenue
for useful quantum error correction in near-term, pre-fault tolerant devices.
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Decoherence, the uncontrolled decay of coherence in
open quantum systems, is a central obstacle to developing
coherent quantum technologies such as quantum sensors,
networks, and computers. This obstacle is compounded by
the destructive nature of quantum measurement: straight-
forward attempts to identify—and ultimately reverse—
decoherence destroy the quantum coherence they seek to
protect. Quantum error correction (QEC) is a technique for
taming decoherence, which sidesteps this issue. It encodes
lower-dimensional quantum states into a higher-dimen-
sional quantum system such that decoherence can be
detected and approximately reversed without collapsing
the encoded state. Specifically, the most common approach
encodes k logical qubits into an n-qubit register (k < n)
whose Hilbert space H is decomposed into orthogonal
subspaces C0; C1; C2;… of dimension 2k [1]. These sub-
spaces are chosen by specifying operators E1; E2;… and
demanding that the logical states, which reside in C0, be
mapped to Ci by Ei without distortion [2]. By performing a
partial measurement that reveals only which subspace
contains the state, and feeding back appropriately, one
can reverse the occurrence of any Ei—and, more generally,
any error in E ¼ spanfI; E1; E2;…g. The conventional
strategy is to pick Eis so that E encompasses a broad
family of operators on H. Using Pauli operators of weight
up to w, for instance, produces a QEC code that corrects
arbitrary errors on w qubits. This is a powerful approach,
especially in large devices (n ≫ 1), since it can reverse
decoherence with little regard to its physical origins [3,4].
For smaller devices, however, casting such a wide net

requires an overhead of qubits (n − k) that is often
prohibitive for near-term applications. A more economical
strategy for small- and intermediate-scale devices is
instead to use a QEC code with E tailored to include only
the dominant, well-characterized decoherence modes.
However, while this strategy is well-known (see [3]
§ 10.6.4), few explicit such codes have been discovered
(see, e.g., Refs. [5–7]).
In order to systematically find noise-tailored QEC codes,

here we focus on dephasing, since it is the dominant type of
decoherence in various experiments. In particular, we
consider the common scenario where dephasing in a
register of qubits arises primarily due to eigenstate-
preserving coupling of each qubit to a common fluctuator,
which in turn exchanges energy with an external environ-
ment. That is, we consider a Hamiltonian

H ¼ H0
f þ

1

2

Xn
j¼1

ωjZj þHint
f ⊗

Xn
j¼1

gjZj; ð1Þ

where ½H0
f; H

int
f � ¼ 0, and a fluctuator that jumps incoher-

ently between energy eigenstates fjlifg (reflected by a
dissipative term in the overall master equation). Moving to
the interaction picture, the Hamiltonian (1) becomes

H̃ ¼
X
l

λljlihljf ⊗ HE; ð2Þ

where Hint
f ¼ P

l λljlihljf and HE ≔
P

n
j¼1 gjZj. When

the fluctuator is in state jlif, qubit j has an effective
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Hamiltonian λlgjZj in the rotating frame. Jumps of the
fluctuator therefore induce spatially correlated random
telegraph noise in the register, which causes dephasing
[8,9]. This model, which we call common-fluctuator
dephasing (CFD), often describes the main decoherence
mechanism in nuclear spins near spin defects (e.g., nitro-
gen-vacancy centers in diamond [10]) or quantum dots, and
can also be significant in superconducting qubits disper-
sively coupled to a common resonator with nonzero
effective temperature [10–24]. Often the register is read
out and/or initialized via the fluctuator, imposing a lower
limit on the desirable coupling strengths gj, and making
CFD a significant decoherence mode. Note that CFD does
not generally produce a decoherence-free subspace (DFS).
The standard QEC approach to correct dephasing uses

Eis comprising Pauli Z operators on at most w qubits (and I
on the rest). There are

P
w
m¼0ðnmÞ such matrices; a simple

counting argument (the quantum Hamming bound applied
to phase noise) therefore suggests that n ≥ 2wþ 1 physical
qubits are required to protect k ¼ 1 logical qubit from
arbitrary phase errors of weight ≤ w [3]. Indeed, the
repetition code saturates this bound: the smallest instance
uses n ¼ 3 for w ¼ 1, has logical states j0Li ¼ jþþþi and
j1Li ¼ j−−−i where j�i ≔ ð1= ffiffiffi

2
p Þðj0i � j1iÞ, and cor-

rects for E ¼ spanfI; Z1; Z2; Z3g. It can correct CFD as
follows: in any run of the experiment, the register evolves
over time t as UðθÞ ¼ e−iθHE for some random variable
θ ∈ ½tλmin; tλmax� that depends on the fluctuator’s trajectory.
For short t (understood in units of 1=maxjljgjλlj, and
often reducible through dynamical decoupling [10,25–27]),
UðθÞ can be approximated as UðθÞ ¼ I − iθHE þOðt2Þ.
Since θHE ∈ E regardless of θ, this three-qubit code
corrects dephasing at order OðtÞ. More generally, Hq

E
contains Paulis of weight ≤ q, so correcting to order
OðtqÞ with the repetition code requires n ¼ 2qþ 1 qubits
(for k ¼ 1).
While the value of θ is unknown and varies from one run

to the next, the coupling strengths gj are often fixed and
well characterized. This suggests designing a code that
corrects expressly for E ¼ spanfI; HE;H2

E;…; Hq
Eg, and

depends on the fgjg in a particular device. A similar
counting argument as above suggests that such a code
would require qþ 1 subspaces to protect a logical qubit to
order OðtqÞ, and would therefore require

n ¼ ⌈1þ log2ðqþ 1Þ⌉ ð3Þ

qubits—an exponentially smaller overhead. We give a
family of such codes here for general q and arbitrary
coupling strengths fgjg. We focus in particular on the
q ¼ 1 case, where one logical qubit is encoded in two
physical qubits rather than three. We construct recovery and
logical operations for this code, which can be implemented
using a constant number of one- and two-qubit operations.

The decomposition H into subspaces Ci for QEC is
equivalent to the Knill-Laflamme conditions [28,29]. For
k ¼ 1 and E ¼ spanfHj

Egqj¼0, these take the form

h0LjHm
E j0Li ¼ h1LjHm

E j1Li; ð4Þ

h0LjHm
E j1Li ¼ 0; ð5Þ

for 0 ≤ m ≤ 2q, where we consider values of q that saturate
the ceiling in Eq. (3) (that is, q ¼ 2n−1 − 1). Finding a QEC
code that corrects this E therefore requires finding logical
states j0Li and j1Li that satisfy Eqs. (4) and (5). We begin
with the ansatz

j0Li ¼
X2n−1
j¼0

rjeiθj jji j1Li ¼
X2n−1
j¼0

rð2n−1−jÞeiϕj jji; ð6Þ

for rj, θj, ϕj ∈ R, where we use jji to denote the n-bit
binary representation of the integer j. That is, we fix the
amplitudes of j1Li to be those of j0Li in reverse order.
Notice that Eq. (6) always satisfies (4) for even m ≥ 0,
since X⊗nHm

EX
⊗n ¼ ð−1ÞmHm

E . For odd m:

h0LjHm
E j0Li ¼ −h1LjHm

E j1Li ¼ z⃗ · v⃗m; ð7Þ

where z⃗, v⃗m ∈ Rqþ1 are defined as zi ¼ hijZLjii, with
ZL ≔ j0Lih0Lj − j1Lih1Lj, and ðv⃗mÞi ¼ hijHm

E jii for i ∈
½0; q� and oddm ∈ ½0; 2q�. Therefore, Eq. (4) is satisfied for
all relevant m if z⃗⊥spanfv⃗mg. We can always find such a
z⃗ (≠ 0⃗) since the v⃗ms have dimension qþ 1 but there are
only q of them, so they cannot form a complete basis. One
approach is to construct a matrix V with v⃗ms as columns;
then, I − VVþ projects onto spanfv⃗mg⊥ (where þ and ⊥
denote the pseudoinverse and orthogonal complement,
respectively) and therefore has at least one real eigenvector
u⃗ with unit eigenvalue [30]. Taking z⃗ ¼ u⃗=jju⃗jj1 satisfies
Eq. (4) since u⃗ · v⃗m ¼ 0 automatically. Finally, building
upon a technique developed in Ref. [7] for optimization, we
pick rjs as

ðrj; rð2n−1−jÞÞ ¼
� ð0; ffiffiffiffizjp Þ; if zj ≥ 0;

ð ffiffiffiffiffiffiffi−zj
p ; 0Þ; if zj < 0:

ð8Þ

This choice ensures that hjj0Li or hjj1Li vanishes for every
j, thus satisfying Eq. (5). We now have normalized logical
states that form a valid QEC code for all q ≥ 1. Notice that
the components of j0Li and j1Li generically have unequal
amplitudes rj by necessity, in marked contrast with
classical error-correcting codes and most known QEC
codes. The phases θj and ϕj can be chosen arbitrarily—
we demonstrate a convenient choice below. The perfor-
mance of these codes on n ≤ 5 qubits is shown in Fig. 1
using an illustrative model of a normally distributed θ. In
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addition, we give the pseudothresholds for n ¼ 2 and 3
under the same model in the Supplemental Material [31].
To illustrate this QEC code, we consider explicitly the

smallest case of n ¼ 2 qubits coupled to a two-level
fluctuator with λ�1 ¼ �1 [cf. Eq. (2)], at high temperature.
We will label the register qubits 1 and 2 such that
jg1j ≥ jg2j. Note that here—and in general—HE ¼ g1Z1þ
g2Z2 is a combination of weight-1 Pauli operators, not a
weight-2 Pauli. This HE gives v⃗1 ¼ ðg1 þ g2; g1 − g2Þ⊤.
The matrix I − VVþ has only a one-dimensional eigen-
space with unit eigenvalue, spanned by u⃗ ¼ ð−g1 þ g2;
g1 þ g2Þ⊤, where u⃗ · v⃗1 ¼ 0. If g1 > 0 we find r1 ¼ r3 ¼ 0
and

r0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 − g2

p
; r2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 þ g2

p
; ð9Þ

where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffijju⃗jj1

p
. This gives logical states

j0Li ¼ jχ0ij0i; j1Li ¼ jχ1ij1i; ð10Þ

with

jχ0i ¼ cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 − g2j

p
eiθ0 j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 þ g2j

p
eiθ2 j1iÞ;

jχ1i ¼ cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 þ g2j

p
eiϕ1 j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1 − g2j

p
eiϕ3 j1iÞ; ð11Þ

where j0i and j1i refer to the states of a qubit. The g1 < 0
case gives the same result up to a relabelling of
j0Li ↔ j1Li. This code corrects for E ¼ spanfI; HEg; by
design, however, it does not correct for Z1Z2, nor Z1 or Z2

individually, none of which belong to E. Rather, it corrects
CFD with fewer qubits than the smallest repetition code
precisely because we have chosen not to correct individual
Pauli operators.
Observe that Eqs. (10) and (11) reduce to a DFS in the

limit where one exists (jg1j ¼ jg2j), but this is in practice
rare. More generally, notice that the choice θ0 ¼ ϕ1 þ π ¼
−θ2 ¼ −ϕ3 ¼ ϑ for arbitrary ϑ proves convenient: first, it
gives hχ0jχ1i ¼ 0, and a simple action of HE on logical
states:

HEj0Li ∝ jχ1ij0i≕ j0Ei
HEj1Li ∝ jχ0ij1i≕ j1Ei: ð12Þ

Both lines have the same proportionality constant, and we
have defined the error states j0Ei and j1Ei. We emphasize
that sinceHE cannot generically be decomposed as a tensor
product, it maps most separable states to entangled states;
Eq. (12)—wherein the first qubit is “flipped” by HE—is
due to our choice of j0Li and j1Li. Second, consider the
orthogonal projectors PL ¼ j0Lih0Lj þ j1Lih1Lj and PE ¼
j0Eih0Ej þ j1Eih1Ej onto C0 ¼ spanfj0Li; j1Lig and C1 ¼
spanfj0Ei; j1Eig respectively (H ¼ C0 ⊕ C1). One can
detect an error nondestructively by measuring parity in
the jχiijji basis, which can be done by performing phase
estimation (i.e., “phase kickback”) on

S ¼ PL − PE ¼ Uz ⊗ Z2 ð13Þ

with an ancilla [33]. Crucially, the choice of phases in j0Li
and j1Li makes S separable here, where Uz ≔ jχ0ihχ0j −
jχ1ihχ1j is a π rotation about some axis determined by g1,
g2, and ϑ. This means that the controlled-S (cS) operation
used to measure the error syndrome can be implemented
through a pair of two-qubit operations (cUz and cZ), rather
than a more challenging three-qubit operation. If an error is
detected, it can be corrected by applying Ux ≔ jχ0ihχ1j þ
jχ1ihχ0j to qubit 1—a π rotation about a different axis.
(Both Ux and Uz could be synthesized out of a constant
number of Pauli rotations, or implemented directly, e.g., by
driving qubit 1 off resonance [34].) The full recovery
procedure, which corrects CFD to leading order, is shown
in Fig. 2. Note that S behaves like a stabilizer, in the sense
of its action on C0 and C1. It does not, however, fit in the
usual QEC stabilizer formalism since fHE; Sg ≠ 0 generi-
cally, because fHE; Sgjψi ¼ 0 for jψi ∈ C0 but not for
jψi ∈ C1 [35]. This is because HE maps C0 to C1 without
distortion, but not vice versa, asHE is not generically in the
Pauli group. (Neither is S.) In spite of these unusual
features, the procedure for feeding back on S in Fig. 2
is largely the same as that of the usual stabilizer formalism.

FIG. 1. Comparison of QEC codes performance. We assume
that the effect of the quantum fluctuator is to impart a random
phase, θ, which follows a Gaussian distribution θ ∼N ð0; σÞ with
standard deviation σ. By normalizing the gjs to lie in ½0; 1�n, σ
describes the noise strength. CFD followed by a QEC recovery (if
applicable) results in an effective phase- or bit-flip channel
ρ ↦ ð1 − pÞρþ pAρA, where A ¼ Z for the physical qubits,
XL for the repetition codes, and ZL for hardware-efficient codes.
The average infidelity, average trace distance and diamond
distance to I are all ∝ p. As the performance of all strategies
shown depends on fgjg, we plot the average of p over
fgjg ∈ ½0; 1�n. The error bands for the hardware-efficient codes
denote the standard error of the mean from Monte Carlo
integration. More details on the numerical implementation are
given in [31].
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Finally, (i) the encoding can be realized by applying a
c2ðUxÞ1 gate to an initial state jχ0ijψi, and (ii) there is a
simple way to implement any logical unitary UL in this
code: apply the corresponding physical U to qubit 2
followed by a recovery.
The logical states derived above are also valid for all

q > 1 (i.e., n > 2 qubits), but the corresponding recovery
and logical operations are generally more involved.
Generically, the analogs of S in (13) are not separable
for any choice of θj and ϕj [36]. One might still synthesize
them with one- and two-qubit operations, perform phase
kickback through optimal control, or implement a QEC
recovery via more general channel-engineering techniques
[37–40]. More efficient solutions could even be found by
analyzing specific experimental scenarios. One approach
could be for example to use devices with fgjg chosen so
that the recovery and logical operations can be conveniently
implemented. One could also correct to a slightly lower
order q [i.e., maintaining n ¼ Oðlog qÞ but not saturating
the ceiling in Eq. (3)]; this would yield a continuous family
of possible z⃗ s [cf. Eq. (8)], among which one might find
codes with convenient QEC operations. Note finally that
for n > 2 it is not the bare Hm

E s that map the codespace to
the orthogonal subspaces fCigi≥1, but rather linear combi-
nations of them.
These noise-adapted QEC codes involve a trade-off: they

correct CFD very efficiently at the cost of leaving most
other errors uncorrected. For instance, errors during
gates, due to miscalibration of gjs, or from decoherence
beyond CFD will generally affect the logical state [31].
Accordingly, these codes are manifestly not fault-tolerant in
their current form [41]. Crucially though, they offer such a
large error budget under strong CFD—as evidenced by the
gaps between QEC codes and physical qubits in Fig. 1—
that this trade-off can easily be worthwhile, much like the
targeted correction of photon loss in [42]. Indeed, as we
show in [31], the gap survives even in the presence of large
miscalibration of the gjs. Fault-tolerance could still be
achieved using implementation-specific methods as in
Ref. [43]. In the long-term, concatenation could potentially
reach fault tolerance, using our noise-adapted codes at the
lowest level of encoding to protect against the dominant
error source, and more conventional codes at higher levels.

Even more importantly, our codes could have a near-term
impact in applications such as quantum sensing and
communication, where long-lived quantum memories are
useful even when they are not fault tolerant. We emphasize,
however, that these codes are designed expressly for small-
and medium-scale qubit registers, and that the exponential
reduction in overhead should be understood to apply only
in such devices. For one, there is typically a maximum n
above which CFD no longer dominates. Also, while the
error budget always increases with n in principle, so too do
the effects of gate errors, miscalibration of gjs and
decoherence beyond CFD, as more qubits introduce more
error channels. Conversely, this growing sensitivity sug-
gests an unconventional quantum sensing scheme to
measure fgjg for large n, by variationally adjusting one’s
estimates to maximize code performance. In the nearer
term, however, these imperfections will likely set a maxi-
mum n in any particular device beyond which one achieves
no further gains, depending on their relative importance
compared to CFD [31].
The QEC codes presented could be generalized in

several ways. First, they can readily be made to correct
dephasing due to multiple common fluctuators given
enough qubits, at the cost of correcting to lower order in
t. Similarly, they can correct spatially correlated phase
noise beyond that arising from common fluctuators. For
instance, classical white noise in the energy gaps of
register qubits leads to Lindblad error operators Lj ¼ffiffiffiffi
λj

p
c⃗j · ðZ1;…; ZnÞ, where f

ffiffiffiffi
λj

p
c⃗jg describes the noise’s

normal modes [44]. In the limit of spatially uncorrelated
noise the Ljs become Pauli Z operators; however, corre-
lated noise produces Ljs with unequal amplitudes

ffiffiffiffi
λj

p
.

When the noise correlations are appreciable, it could be
advantageous to use a QEC code that corrects the stronger
noise modes (those with large λjs) to higher order in t than
the weaker ones (smaller λjs) through an appropriate choice
of V. It may also be possible to extend the codes presented
here for the setting where a fluctuator’s state affects not
only the energy gap of each qubit, but also the direction of
its Hamiltonian (i.e., its quantization axis) [45]. Eigenstate-
preserving coupling arises frequently in practice because a
large detuning between a weakly-coupled qubit and fluc-
tuator suppresses noncommuting parts of their interaction
Hamiltonian. However, when the coupling to the fluctuator
is comparable to the internal Hamiltonian, such as for
nuclear spins near defects in diamond, there can remain
significant noncommuting terms leading to HE ∼

P
j g⃗j ·

σ⃗j in Eq. (2). We analyze this effect’s impact on code
performance in [31]. Extending the codes introduced here
to this more general setting would make them even more
widely applicable to near-term experiments, but at the cost
of larger overheads, since they would need to contend
with a substantially larger space of possible errors. It may
be more practical instead to suppress noncommuting

FIG. 2. A recovery procedure for n ¼ 2 qubits where jψLi ¼
αj0Li þ βj1Li for arbitrary α and β, H denotes a Hadamard gate,
and θ is a random variable. The unitaries Ux and Uz are both π
rotations about orthogonal axes on the Bloch sphere which are
determined by g1, g2, and ϑ.
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interaction terms at the hardware level by increasing the
energy gaps ωj of the register qubits, or at the “software"
level through concatenation [31]. Another interesting
generalization would be to efficiently encode k > 1 logical
qubits, which seems plausible based on the counting
argument used throughout involving the dimension of H
vs E. Finally, it would be interesting to use the tools
presented here to design codes for other common error
sources, such as other types of decoherence, or control and/
or measurement errors.
Our results demonstrate that it is possible to find noise-

adapted QEC codes with a well-defined advantage (here
exponential) over known, general codes. It is commonly
argued that QEC will be of little use in noisy intermediate-
scale quantum (NISQ) devices due to its prohibitive over-
head [46]. Noise-adapted QEC codes are a promising way
to reduce this overhead, although to date they have mostly
relied on numerical and variational techniques that lack
transparency in terms of what advantage the codes can
offer, and when [47–51] (see also [4] Ch. 13 and [52]). In
contrast, the codes introduced here exhibit a clear reduction
in overhead under a well-characterized and common type
of noise. New QEC codes of this type could provide a
middle ground between small-scale uncorrected devices
and large-scale fault-tolerant ones, where the dominant
decoherence mechanisms are tamed through specialized
codes with only modest overheads. This view of near-term
QEC as quantum “firmware” rather than “software” sug-
gests a possible interplay between theory and experiment,
whereby NISQ hardware and efficient QEC codes both
guide each other’s development.

We wish to thank Isaac Chuang, Liang Jiang, Morten
Kjaergaard, Yi-Xiang Liu, William Oliver, and Peter Shor
for helpful discussions. This work was supported in part by
the U.S. Army Research Office through MURI Grant
No. W911NF-15-1-0548, and by NSF Grants
No. EECS1702716 and No. EFRI-ACQUIRE 1641064.

[1] In general, there could also be a “remainder” subspace CR of
arbitrary dimension so that H ¼ ð⨁iCiÞ ⊕ CR.

[2] While it is possible for multiple Eis to have the same effect
on the logical states, thus reducing the number of subspaces
required for QEC, we will not deal with such degenerate
codes here.

[3] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition
(Cambridge University Press, Cambridge, UK, 2010).

[4] D. Lidar and T. Brun, Quantum Error Correction
(Cambridge University Press, New York, NY, 2013).

[5] D.W. Leung, M. A. Nielsen, I. L. Chuang, and Y. Yama-
moto, Phys. Rev. A 56, 2567 (1997).

[6] A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia,
Phys. Rev. Applied 8, 064004 (2017).

[7] D. Layden, S. Zhou, P. Cappellaro, and L. Jiang, Phys. Rev.
Lett. 122, 040502 (2019).

[8] S. Machlup, J. Appl. Phys. 25, 341 (1954).
[9] C. Neuenhahn, B. Kubala, B. Abel, and F. Marquardt, Phys.

Status Solidi B 246, 1018 (2009).
[10] M. Chen, W. K. C. Sun, K. Saha, J.-C. Jaskula, and P.

Cappellaro, New J. Phys. 20, 063011 (2018).
[11] Such coupling induces an effective σþσ− þ σ−σþ interac-

tion between qubits, which could be suppressed through
dynamical decoupling or through large detunings between
qubits.

[12] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D.
Bennett, F. Pastawski, D. Hunger, N. Chisholm, M.
Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin,
Science 336, 1283 (2012).

[13] J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, Phys. Rev.
A 87, 012301 (2013).

[14] S. Zaiser, T. Rendler, I. Jakobi, T. Wolf, S.-Y. Lee, S.
Wagner, V. Bergholm, T. Schulte-Herbrüggen, P. Neumann,
and J. Wrachtrup, Nat. Commun. 7, 12279 (2016).

[15] P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M.
Harmans, D. P. DiVincenzo, and J. E. Mooij, Phys. Rev.
Lett. 95, 257002 (2005).

[16] P. Bertet, I. Chiorescu, C. Harmans, and J. Mooij, https://
arxiv.org/abs/cond-mat/0507290.

[17] J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L.
Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 74, 042318 (2006).

[18] J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J.
Schreier, L. Frunzio, D. Schuster, A. Houck, A. Wallraff
et al., Nature (London) 449, 443 (2007).

[19] A. A. Clerk and D.W. Utami, Phys. Rev. A 75, 042302
(2007).

[20] A. P. Sears, A. Petrenko, G. Catelani, L. Sun, H. Paik, G.
Kirchmair, L. Frunzio, L. I. Glazman, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. B 86, 180504(R) (2012).

[21] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears,
D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S.
Weber et al., Nat. Commun. 7, 12964 (2016).

[22] J.-H. Yeh, J. LeFebvre, S. Premaratne, F. C. Wellstood, and
B. S. Palmer, J. Appl. Phys. 121, 224501 (2017).

[23] F. Yan, D. Campbell, P. Krantz, M. Kjaergaard, D. Kim, J. L.
Yoder, D. Hover, A. Sears, A. J. Kerman, T. P. Orlando, S.
Gustavsson, and W. D. Oliver, Phys. Rev. Lett. 120, 260504
(2018).

[24] Z. Wang, S. Shankar, Z. K. Minev, P. Campagne-Ibarcq, A.
Narla, and M. H. Devoret, Phys. Rev. Applied 11, 014031
(2019).

[25] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[26] M. Ban, J. Mod. Opt. 45, 2315 (1998).
[27] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga,

W.M. Itano, and J. J. Bollinger, Nature (London) 458,
996 (2009).

[28] E. Knill and R. Laflamme, Phys. Rev. A 55, 900
(1997).
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