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Artificial neural networks were recently shown to be an efficient representation of highly entangled
many-body quantum states. In practical applications, neural-network states inherit numerical schemes used
in variational Monte Carlo method, most notably the use of Markov-chain Monte Carlo (MCMC) sampling
to estimate quantum expectations. The local stochastic sampling in MCMC caps the potential advantages of
neural networks in two ways: (i) Its intrinsic computational cost sets stringent practical limits on the width
and depth of the networks, and therefore limits their expressive capacity; (ii) its difficulty in generating
precise and uncorrelated samples can result in estimations of observables that are very far from their true
value. Inspired by the state-of-the-art generative models used in machine learning, we propose a specialized
neural-network architecture that supports efficient and exact sampling, completely circumventing the need
for Markov-chain sampling. We demonstrate our approach for two-dimensional interacting spin models,
showcasing the ability to obtain accurate results on larger system sizes than those currently accessible to
neural-network quantum states.
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Introduction.—The theoretical understanding and mod-
eling of interacting many-body quantum matter has repre-
sented an outstanding challenge since the early days of
quantum mechanics. At the heart of several problems in
condensed matter, chemistry, nuclear matter, and more lies
the intrinsic difficulty of fully representing the many-body
wave function, in principle needed to exactly solve
Schrödinger’s equation. These mainly fall into two catego-
ries: on one hand, there are states traditionally used in
stochastic variational Monte Carlo (VMC) calculations [1].
Chief examples are Jastrow wave functions [2], carrying
high entanglement, but also with a limited variational
freedom. On the other hand, more recently, tensor-network
approaches have been put forward, based on non-
stochastic variational optimization, and most chiefly on
entanglement-limited variational wave functions [3–6].
In an attempt to circumvent the limitations of the

approaches above, architectures based on artificial neu-
ral-networks (ANN) were proposed as variational wave
functions [7]. Restricted Boltzmann machines (RBM),
which represent relatively veteran machine-learning con-
structs, were shown to be capable of representing volume-
law entanglement scaling in two dimensions (2D) [8–11].
Recently, other neural-network architectures have been
explored. Most notably, convolutional neural networks
(ConvNets)—leading deep learning architectures that stand
at the forefront of empirical successes in various artificial
intelligence domains—have been applied to both bosonic
[12] and frustrated spin systems [13].

Despite the provable theoretical advantage of ConvNet
architectures [14], however, early numerical studies have
been limited to relatively shallow architectures, far from the
very deep networks used in modern machine-learning
applications. This practical limitation is mostly due to
two main factors. First, it is computationally expensive
to obtain quantum expectation values over ConvNet
states using stochastic sampling based on Markov-chain
Monte Carlo (MCMC) calculations, as is it is customary in
VMC applications. Second, there is an intrinsic optimiza-
tion bottleneck to be faced when dealing with a large
number of parameters. However, both limitations are
routinely faced when learning deep autoregressive models,
recently introduced machine-learning techniques that have
enabled previously intractable applications.
In this paper, we propose a pivotal shift in the use of

neural-network quantum states (NQS) for many-body
quantum systems that markedly sets a discontinuity with
traditionally adopted VMC methods. Inspired by the latest
advances in generative machine-learning models, we intro-
duce variational states for which both the sampling and the
optimization issues are substantially alleviated. Our model
is composed of a ConvNet that allows direct, efficient, and
i.i.d. sampling from the highly entangled wave function it
represents. The network architecture draws upon successful
autoregressive models for representing and sampling from
probability distributions. These are widely employed in the
machine-learning literature [15], and have been recently
used for statistical mechanics applications [16], as well as
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density matrix reconstructions from experimental quantum
systems [17]. We generalize these autoregressive models to
treat complex-valued wave functions, obtaining highly
expressive architectures parametrizing an automatically
normalized many-body quantum wave function.
Neural autoregressive quantum states.—We consider in

the following a pure quantum system, constituted by N
discrete degrees of freedom s≡ ðs1;…; sNÞ (e.g., spins,
occupation numbers, etc.) such that the wave-function
amplitudes ΨðsÞ fully specify its state. Here we follow
the approach introduced in [7], and represent ln½ΨðsÞ� as a
feed-forward ANN, parametrized by a possibly large
number of network connections. Given an arbitrary set
of quantum numbers, s, the output value computation of the
corresponding NQS, known as its forward pass, can
generally be described as a sequence of K matrix-vector
multiplications separated by the applications of a nonlinear
elementwise activation function σ: C → C. More formally,
the un-normalized log amplitudes are given by

ln½ΨðsÞ� ¼ WKσ½Wk−1σð� � � σðW1sÞÞ�; ð1Þ

where W≡fWi∈Cri×ri−1gKi¼1, r0¼N;rK¼1;r1;…;rK−1
are known as the widths of the network, and K as the
depth. In practice, specialized variants of Eq. (1) are
commonly used; e.g., early applications have focused on
shallow architectures (k ¼ 1) such as restricted Boltzmann
machines, for which the activation function is typically
taken to be σðzÞ ¼ ln coshðzÞ. Other, deeper, choices are
often advantageous, such as convolutional networks, in
which most of the matrices are restricted to act on a subset
of the quantum numbers, computing convolutions with
small filters.
Given an NQS representation of a many-body quantum

state, estimating physical observables hΨjOjΨi of a local
operator O is in general analytically intractable, but can be
realized numerically through a stochastic procedure, as
done in VMC. Specifically, hΨjOjΨi ¼ hOlociP , where
h…iP denote statistical expectation values over the
Born probability density PðsÞ≡ jΨðsÞj2, and Oloc ≡P

s0 hsjOjs0iΨðs0Þ=ΨðsÞ is the corresponding statistical
estimator. In the vast majority of VMC applications,
including NQS so far, a MCMC algorithm is typically
used to generate samples from PðsÞ. While MCMC is a
rather flexible technique, it comes with a large computa-
tional cost, especially for deep ANNs. Additionally, though
MCMC asymptotically generates samples that are correctly
distributed, in practice it can be plagued by very large
autocorrelation times, and lack of ergodicity, that can
severely affect the quality of the samples being generated.
In light of these limitations, we propose here a specialized

network architecture that instead supports efficient and exact
sampling. Our approach is an extension of neural autore-
gressive density estimators (NADE) [15] to quantum appli-
cations, resulting in what we dub neural autoregressive

quantum states (NAQS). To start with, first consider the task
of representing a probability distribution with NADE
models. These models build on the so-called autoregressive
property, which entails a decomposition of the full proba-
bility distribution as a product of conditionals, i.e.,
Pðs1;…; sNÞ ¼

Q
N
i¼1 piðsijsi−1;…; s1Þ. The power of these

models comes from the observation that, for every i, the
conditional probabilities pi can be individually represented
as an ANN receiving as input the variables s1, …; si−1 and
outputting a vector vi ≡ ðvi;s1 ; vi;s2 ;…; vi;sMÞ representing
the un-normalized probabilities for si to take one of the M
possible discrete values sj, conditioned on given s1;…; si−1.
It is crucial that each output vector vi does not depend on
the value of si or any of the variables appearing with
a larger index, siþ1;…; sN , for a prechosen ordering.
To ensure that each network outputs a valid conditional
distribution, it is then sufficient to take the exponent of
each entry and normalize it according to the l1 norm, i.e.,
piðsijsi−1;…;s1Þ¼expðvi;siÞ=

P
s0 jexpðvi;s0 Þj, also known

as a Softmax operation.
Even though it is possible to use N separate networks for

each of theN conditional probabilities, and each accepting a
variable number of inputs, in practice it is more common to
use a single ANN that accepts N inputs and outputs N
probability vectors. In this case, the autoregressive property
is enforced bymasking the inputs si;…; sN for the ith output
vector, i.e., ensuring that the contributions of higher-ordered
spins to the output of the network vanish. PixelCNN [18] is
such an architecture, and is built as a sequence of masked
convolutional layers, whose filters are restricted to having
0’s at positions “ahead.” For example, in a one-dimensional
system, a filter of width R, where R is odd, would be
constrained to have ðw1;…; wðR−1Þ=2; 0;…; 0Þ, and thus the
ith output of each layer depends uniquely on the indices
at s1;…; si−1.
A chief advantage of networks with the autoregressive

property is that directly drawing samples according to PðsÞ
is conceptually straightforward. One can sample each si in
sequence, according to its given conditional probability that
depends just on the previously sampled ðs1;…; si−1Þ.
Carefully exploiting the intrinsic sparseness of the network
weights further leads to a very efficient algorithm for
sampling [19]. Remarkably, the complexity of sampling
a full string s1…sN in a PixelCNN architecture can be
reduced to the complexity of just a single forward pass.
Our NAQS model for representing wave functions is

based on the same NADE principles so-far described.
Specifically, just as probability functions can be factorized
into a product of conditional probabilities, we represent a
normalized wave function as a product of normalized
conditional wave functions, such that

Ψðs1;…; sNÞ ¼
YN
i¼1

ψ iðsijsi−1;…; s1Þ; ð2Þ
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where ψ iðsijsi−1;…; s1Þ are such that, for any fixed
ðs1;…; si−1Þ ∈ f1;…;Mgi−1, they satisfy the normaliza-
tion condition

P
s0 jψ iðs0jsi−1;…; s1Þj2 ¼ 1. If this condi-

tion holds, then a strong normalization condition for the full
wave function follows (see proof in Supplemental
Material [20]).
Claim 1 Let Ψ: ½M�N → C such that Ψðs1;…; sNÞ ¼Q
N
i¼1 ψ iðsijsi−1;…; s1Þ, where fψ igNi¼1 are normalized

conditional wave functions. Then, Ψ is normalized, i.e.,P
s1;…;sN jΨðs1;…; sNÞj2 ¼ 1.
As in the NADE case, we represent a conditional wave

function with an ANN accepting ðs1;…; si−1Þ and out-
putting a complex vector vi ≡ ðvi;s1 ; vi;s2 ;…; vi;sMÞ ∈ CM

for each of the M possible values taken by the local
quantum numbers si. To obtain a normalized conditional
wave function, we take its exponent and normalize it
according to the l2-norm, i.e., ψ iðsijsi−1;…; s1Þ ¼
v̂i;si ≡ expðvi;siÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s0 jexpðvi;s0 Þj2

q
. Given this parametri-

zation, the full wave-function log amplitude lnΨðs1…sNÞ
is easily obtained, once all the vectors v1;…; vN have been
computed, as given by

lnΨðsÞ ¼
XN
i¼1

�
vi;si −

1

2
ln
X
s0
jexpðvi;s0 Þj2

�
: ð3Þ

As in the probabilistic autoregressive model, we can
represent the entire NAQS by a single neural network
outputting N complex vectors, as illustrated in Fig. 1(a).
Though our proposed architecture can work with either
complex or real parameters, we have found that using
the latter work better, where we represent each complex
conditional log amplitude using two real values, log
magnitude and phase.
Moreover, there is a special relationship between

a NAQS and its induced Born probability, since
jΨðs1;…; sNÞj2 ¼

Q
N
i¼1 jψ iðsijsi−1;…; s1Þj2, implying that

jψ iðsÞj2 is a valid conditional probability. Thus, the induced

Born probability of a NAQS has the exact same structure of
a NADE model. Specifically, taking the squared magnitude
of its output vectors, i.e., ∀ i; s0; v̄i;s0 ¼ jv̂i;s0 j2, transforms
NAQS into a standard NADE representation of this dis-
tribution, which importantly includes its efficient and exact
sampling method. In contrast to standard MCMC sampling
employed for correlated wave functions, NAQS thus allows
for direct, efficient sampling with the computational com-
plexity of a single forward pass, as depicted in Fig. 1(b).
Optimization.—The NAQS representation of many-body

wave functions can be used in practice for several appli-
cations. These include, for example, ground-state search
[7], quantum-state tomography [21], dynamics [7], and
quantum circuits simulation [22]. Here we more specifi-
cally focus on the task of finding the ground state of a given
HamiltonianH. In this context, we denote by ΨW the wave
function represented by a NAQS of a fixed architecture
that is parametrized by W, and we wish to find W values
that minimize the energy, i.e., W� ¼ argminWEðWÞ,
where EðWÞ ≡ hΨW jHjΨWi ¼ Es∼jΨW j2 ½Elocðs;WÞ�,
Elocðs;WÞ≡P

s0 Hs;s0 ½ΨWðs0Þ=ΨWðsÞ�, and H is usually
a highly sparse matrix, and so computing Eloc for a given
sample takes at most OðNÞ forward passes.
The common approach for solving the optimization

problem above with a NQS is to estimate the gradient of
EðWÞ with respect to W, and use variants of stochastic
gradient descent (SGD) to find the minimizer of EðWÞ.
Estimating the gradient can be done by first employing a
variant of the log-derivative trick, i.e.,

∂E
∂W ¼ Es∼jΨW j2

�
2Re

�
½ElocðsÞ� − E�� ∂ lnΨW

∂W
��

: ð4Þ

Now, while we can efficiently compute the log derivative
ofΨW , exactly computing the expected value is intractable,
but we can still approximate it by computing its value over
a finite batch of samples fsðiÞgBi¼1. The quality of this

FIG. 1. Neural autoregressive quantum states are neural networks that represent a normalizedwave function,Ψðs1;…; sNÞ, by factoring
it to a sequence of normalized conditional wave functions, denoted byΨiðsijsi−1;…; s1Þ for the ith particle, in amanner similar to that of a
neural autoregressive density estimator [see Eq. (3)]. (a) Illustration of a deep one-dimensional-convolutional NAQSmodel following the
PixelCNN [18] architecture. Each column of nodes represents a layer in the network, starting with the input layer representing the
N-particle configuration ðs1;…; sNÞ. Each internal node in the graph is a complex vector computed according to its layer type. Namely,
masked convolutions are limited to having local connectivity, where a node at the jth row is only connected to nodes with connections to si
where i < j. All inputs to a node at the lth layer are multiplied by a matrixWðlÞ, shared across all rows in the same layer, and followed by
applying a nonlinear elementwise function σ:C → C. (b) Depicts the exact sampling algorithm for NAQS, where empty nodes represent
unused nodes, and filled but faded nodes represent cached results from previous steps. The quantum number of each particle is generated
sequentially, by computing its respective conditional wave function, and sampling according to the squared magnitude. Notice that only a
single row is processed at each step, and so sampling a complete configuration has the same runtime as a single forward pass.
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approximation depends on the batch size, B, but also on the
degree of correlations between the individual samples. The
advantages of our direct sampling method supported by
NAQS over MCMC are twofold in this context: (i) Faster
sampling: each individual sample can be generated with
fewer network passes, and generating a batch of samples is
embarrassingly parallel, as opposed to the sequential nature
of MCMC; (ii) faster convergence: the generated samples
are exact and i.i.d., and so result in more accurate estimates
of the gradient at each step.
Experiments.—As a first benchmark for our approach,

we consider a case where MCMC sampling can be strongly
biased. A paradigmatic quantum system exhibiting this
issue is found in the ferromagnetic phase of the transverse
field Ising model. The Hamiltonian for this model is given
by H ¼ −J

P
hi;ji σizσ

j
z − Γ

P
i σ

i
x, where the summation

runs over pairs of lattice edges. Here we study the case of a
2D square lattice with open boundary conditions, and for
varying strengths of the transverse field. The system is in a
ferromagnetic phase when the transverse magnetic field Γ
is weak with respect to the coupling constant, and specifi-
cally in 2D when Γ < Γc ≃ 3.044J [23].
In order to verify the correctness of the model proposed in

Sec. II, we begin by comparing the ground-state energy and
system magnetization obtained for a 12 × 12 system with
those obtained by an unbiased quantumMonte Carlo (QMC)
simulation. Using our FlowKet open-source library [24], we
employ a NAQS model following the PixelCNN architec-
ture, using the ADAM [25] SGD variant with the gradient
estimator of Eq. (4) (see further technical details in
Supplemental Material [20]). Table I shows that our model
achieves very high accuracy for both magnetization and
energy densities for different transverse field values across
the phase diagram: when the system is in the ferromagnetic
phase, the normal phase, and near the phase transition.
In order to quantify the behavior of our model in a region

of broken symmetry, we consider the case of a transverse
field deep in the ferromagnetic region, namely, Γ ¼ 2J. The
principal component analysis visualization in Fig. 2 shows
that for this value ofΓ theMCMCchains initialized at one of
the oriented states composing the ground state are stuck at
that specific orientation and cannot come around to sam-
pling spin configurations that correspond to the opposite

orientation. In contrast, spin configurations sampled directly
from the distribution by using our proposed technique
include equally probable configurations from both orienta-
tions. The ergodicity breaking in local MCMC is also
directly quantifiable by the expectation value of the total
magnetizationm≡ hPi σ

z
i i, for which we expectm ¼ 0 on

any finite lattice. Indeed, the i.i.d. sampling enabled by our
model correctly explores the two relevant ferromagnetic
states (in agreement with the visualization of Fig. 2) and
reaches a value close to a total zero magnetization, in stark
contrast with MCMC estimation that effectively computes
hjσzji ≈ 0.78 rather thanm. As expected, directly estimating
hjσzji with our sampling method correctly recovers it to a
high precision; see Table I.
The limitation of the MCMC procedure in providing

independent samples is not only conceptually relevant,
but it can also have consequences on the quality of the
resulting ground-state approximations. In Fig. 3, we show

TABLE I. Estimates of the ground-state energies of the
transverse-field Ising model for different values of Γ on a
12 × 12 lattice, and the corresponding estimates of hσzi, as
obtained by either NAQS or QMC.

Γ NAQS Energy QMC Energy NAQS hjσzji QMC hjσzji
2.0 J −2.4096022ð2Þ −2.40960ð3Þ 0.78326(2) 0.78277(38)
2.5 J −2.7476550ð5Þ −2.74760ð3Þ 0.57572(3) 0.57566(63)
3.0 J −3.1739005ð5Þ −3.17388ð4Þ 0.16179(4) 0.16207(54)
3.5 J −3.6424799ð3Þ −3.64243ð4Þ 0.11094(3) 0.11011(30)
4.0 J −4.1217979ð2Þ −4.12178ð4Þ 0.09725(2) 0.09728(24)

FIG. 2. An illustration of the two modes of the ground state, by
taking the first two principal components of the generated
samples. The green points correspond to our direct sampling
method, and the other colors represent different MCMC chains.
The plot was generated by training a NAQS on the transverse-
field Ising model with Γ ¼ 2J, below the critical value, on a
12 × 12 lattice until convergence to the ground state, and then
sampling from the trained NAQS using either our direct sampling
method, or four separate MCMC samplers.

FIG. 3. Comparing the effects of the sampling method, either
MCMC or direct sampling, on the training procedure for the
transverse-field IsingmodelwithΓ ¼ 3J, close to the critical value,
on a large (21 × 21) lattice.When usingMCMC, samples are taken
every k ∈ f10; 50; 100; 300g steps in the chain, where increasing k
reduces the correlation between samples at the expense of
increased computational cost. The solid lines shows the relative
error to the minimal energy found for this system in our experi-
ments, and dashed lines shows the energy variance. Since MCMC
takes a considerable time to complete just a single iteration, we
have restricted the training to a maximum of 100 hours.
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the training procedure for the transverse-field Γ ¼ 3J,
close to the critical value on a larger system (21 × 21).
The same NAQS architecture was trained once with the
i.i.d. sampling procedure and once with MCMC chains of
varying lengths. The optimization advantage obtained
when relying on independent samples clearly emerges
from those figures—this procedure is much quicker and
results in a significantly more accurate ground-state energy
and lower energy variance hH2i − hHi2.
As a further benchmark, we also apply our method

to a more complex system, the two-dimensional anti-
ferromagnetic Heisenberg model with open boundary
conditions, whose Hamiltonian is given by H ¼P

hi;ji σixσ
j
x þ σiyσ

j
y þ σizσ

j
z. We evaluate our approach by

comparing the ground-state energy obtained for 10 × 10
and 16 × 16 systems with those obtained by QMC simu-
lations, as well as other variational methods. We find that
NAQS meaningfully improve upon the accuracy of the
best-known variational methods for this problem. Namely,
for 10 × 10, a relative error of 8.7 × 10−5 � 0.6 × 10−5

was reported in Liu et al. [26] using a PEPS model,
whereas with our approach we were able to obtain
3.5 × 10−5 � 0.4 × 10−5. See Table II for exact results.
While the PEPS results can be, in principle, further
improved, increasing the accuracy comes with a very
significant computational requirements [27] due to the
unfavorable computational scaling with respect to the bond
dimension. Moreover, though not directly comparable, it is
noteworthy that the relative error of the ground-state energy
with periodic boundary conditions obtained by NQS with
MCMC sampling is significantly less accurate than ours
(Carleo and Troyer [28] and Choo et al. [29] report relative
error greater than 2 × 10−4).
Discussion.—In this work, we have shown a scheme to

facilitate the practical employment of contemporary deep
learning architectures to the modeling of many-body
quantum systems. This constitutes a striking improvement
over currently used RBM methods that are limited to only
hundreds of parameters, and very shallow networks.
A further practical advantage we gain is the ability to
make use of the substantial body of knowledge regarding
optimization of these architectures that is accumulating in
the deep learning literature. We empirically demonstrate
that by employing common deep learning optimization
methods such as SGD, our direct sampling approach allows

us to train very large convolutional networks (20 layers,
21 × 21 lattice, ∼1M parameters). Our presented experi-
ments demonstrate that even for relatively simple systems
MCMC sampling can fail, while the i.i.d. sampling enabled
by our model succeeds. Relying on the theoretically
promising results regarding convolutional network capa-
bilities in representing highly entangled systems [14],
namely, systems satisfying volume law, we view the
enabling of their optimization as an integral step in reaching
currently unattainable insight on a vast variety of quantum
many-body phenomena.
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