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The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling
is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite
temperature, the absence of long-range order makes the question of how the interaction-driven insulator is
realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using
self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and
show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to
insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate
crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface.
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The interaction driven metal-to-insulator (MIT) transi-
tion has been for many years a problem of central focus for
the field of strongly correlated electron systems (see, e.g.,
Refs. [1,2] and references therein). Particularly challenging
has been the quantitative, and even qualitative, under-
standing of the MIT in two-dimensional systems. Here, the
basic model—the single-band Hubbard model with nearest-
neighbor hopping on the square lattice—can nowadays be
accurately emulated and probed with ultracold atoms in
optical lattices [3–8] at ever decreasing temperatures,
putting controlled experimental studies of the this problem
within reach. The model is given by the Hamiltonian

H ¼
X

k;σ

ðϵk − μÞc†kσckσ þU
X

i

ni↑ni↓; ð1Þ

where μ is the chemical potential, k (quasi)momentum with
the lattice constant set to unity, niσ the number operator of
fermions with spin σ on the square lattice site i, U the on-
site repulsion, and ϵk ¼ −2t½cosðkxÞ þ cosðkyÞ�. For the
description of the MIT, nonperturbative numerical meth-
ods, such as the dynamical mean-field theory (DMFT) and
related cluster and diagrammatic extensions [1,2,9–15],
have played a central role. In the single-site paramagnetic
DMFT [1] solution, which becomes exact in the limit of
infinite dimensions, the metallic phase at half filling (the

average density per site hni ¼ 1) persists down to zero
temperature at weak interactions. It is separated from the
Mott insulator by a first-order MIT at a sufficiently large
value of U ¼ Uc, ending at a finite temperature with an
Ising critical point. Extensions of DMFT to small (up to 16
sites) real-space clusters [10–12] have shown that the
inclusion of short-range spin fluctuations changes this
picture substantially—a non-Fermi-liquid (nFL) state with
a Fermi surface (FS) gap in certain momentum sectors
continuously develops at a finiteU before the transition, the
value of Uc is reduced, and the slope of the first-order line
is inverted.
It is, however, well known that the ground state of the

model (1) at hni ¼ 1 is an antiferromagnet (AFM) at any
U > 0. As revealed by Slater [16], the FS nesting, i.e., the
existence of a single wave vector Q ¼ ðπ; πÞ that connects
any point on the FS to another FS point, makes the
interacting Fermi gas unstable against formation of the
spin density wave with the wave vector Q already at
infinitesimally small U. The corresponding unit-cell dou-
bling makes the ground state a band insulator. While the
Mermin Wagner theorem [17] forbids the long-range order
at T > 0, the AFM correlation length ξ is exponentially
large at low temperature, log ξ ∝ t=T; i.e., for practical
purposes, the system is best described as a quasi-AFM.
Indeed, experiments with ultracold atoms [7] observed a
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perfect AFM state in model (1) on a ∼10 × 10 lattice at
temperatures as high as T ∼ 0.25t. Such AFM correlations
are explicitly truncated (and typically suppressed) in cluster
DMFT calculations unless linear cluster sizes are compa-
rable to ξ [18], which becomes computationally prohibitive
at low T even at half filling [19]. Recent work [2] based on
the dynamical vertex approximation (DΓA), a diagram-
matic extension of DMFT capable of capturing long-range
correlations approximately, and determinant quantum
Monte Carlo (DQMC) simulations indicates that the
low-temperature crossover from the Fermi liquid (FL) to
the quasi-AFM insulator preempts and precludes the MIT.
In this Letter, we aim at establishing the picture of

developing an insulating AFM state with controlled accu-
racy using the recently introduced ΣDDMC approach [20]
(a similar approachwas developed inRef. [21]). Themethod
deterministically sums all topologies of Feynman diagrams
for self-energy (for introduction, see, e.g., Ref. [22]) by
means of determinants [23,24] with a recursive scheme in
the spirit of Rossi’s algorithm [25] to extract only one-
particle irreducible diagrams. Integration over internal
variables is performed by Monte Carlo sampling, and the
thermodynamic limit (TDL) is taken explicitly. Compared to
the standard DiagMC approach [26,27], where diagram
topologies are sampled stochastically, ΣDDMC enables
access to substantially higher (∼10–12) expansion orders
and more accurate determination of the self-energy.
Our main result is summarized in Fig. 1. At sufficiently

low temperature, T ≲ 0.25t, we observe the crossover from
the low-U metallic FL state with a well-defined FS (the red
region) to the quasi-AFM insulator with temperature-
activated quasiparticles (the blue region). In between, there
is a transitional nFL regime (the gray region) bound by two
lines TanðUÞ (red points) and TnðUÞ (blue points): as T is
lowered, the quasiparticle gap continuously develops along
the FS, first appearing at the antinodal point kan ¼ ðπ; 0Þ
at TanðUÞ and proliferating to the nodal point kn ¼
ðπ=2; π=2Þ at TnðUÞ. Thus, the crossover involves a regime
with a partially gapped FS and damped gapless quasipar-
ticles elsewhere on the FS, the so-called pseudogap driven
by extending AFM fluctuations [28–34], similar to that
found at the MIT for the model (1) in eight-site cluster
DMFT [11]. It extends over an appreciable range of
parameters at larger U (or T). When quasiparticle proper-
ties could be meaningfully defined (T ≲ 0.25t), we find that
already atU ≳ 4t the FL is lost and the self-energy reveals a
charge gap. This value is significantly smaller than the
critical Uc ∼ 5–6t found for the MIT in small-cluster
DMFT results [10–12]. This leaves no room for the MIT
in the Hubbard model (1) without additional frustration of
antiferromagnetic correlations—the FL-quasi-AFM cross-
over destroys the FL before it can undergo a first-order
transition everywhere where the FL can be defined. U ¼ 4t
is the upper bound on the interaction strength beyond
which the low-T behavior is not qualitatively different from

that of the Heisenberg model. As the crossover is expected
to become increasingly mean-fieldlike at smaller U < 2.5t,
driven by magnetic correlations with large ξ, it is rather
instructive that in this regime the crossover temperatures
TanðUÞ and TnðUÞ approximately coincide and both are
captured by the mean-field Néel temperature ansatz
a expð−b= ffiffiffiffi

U
p Þ with empirical parameters that agree with

estimates found in Ref. [35].
We verify our results in Fig. 1 against large-scale

dynamical cluster approximation (DCA) calculations at
higher temperatures. DCA is a nonperturbative momentum
space variant of cluster DMFT with which we utilize an
auxiliary-field cluster impurity solver [9,36,37]. Results for
cluster sizes up to 144 sites reveal very slow convergence of
the self-energy with cluster size. We further illustrate the
significance of finite-size errors by comparing ΣDDMC
results in the TDL to ΣDDMC calculations on finite
lattices.
In the FL theory, the quasiparticle residue at the

chemical potential is a positive number less than unity.
It is defined through limω→0½∂ReΣkðωÞ=∂ω� (with ΣkðωÞ
the self-energy at the momentum k and real frequency ω).
On the Matsubara (imaginary-frequency) axis, in the low-
temperature limit, this is equivalent through a Wick rotation
to limiωn→0½∂ImΣkðiωnÞ=∂ωn�. In contrast, ΣkðωÞ in an
insulator exhibits a pole at ω ¼ 0. At sufficiently low
temperature, when discrete values of ωn ¼ 2πTðnþ 1=2Þ

FIG. 1. Crossover lines between the Fermi-liquid (FL, red), non-
Fermi-liquid (nFL,gray), andquasi-AFM insulator (I, blue) regimes
of the half-filled 2D Hubbard model (1) on the square lattice in the
U-T plane obtained by ΣDDMC. The solid lines fit data by the
functions Tan¼aexpð−b= ffiffiffiffi

U
p Þ and Tn¼a0expð−b0= ffiffiffiffi

U
p Þ with

fa; b; a0; b0g ¼ f6.99; 6.51; 4.7; 6.08g. It follows that below U ¼
2.5t the low-temperature physics is of the mean-field character,
while beyond U ¼ 4t the low-temperature behavior is expected to
resemble that of the Heisenberg model.
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remain closely spaced to perform the limit ωn → 0, this
qualitative difference provides a metric to define the state: if
ImΣkðiω0Þ > ImΣkðiω1Þ for all k on the FS the state is
metallic (FL-like, referred to as FL below); when the
reverse is true, ImΣkðiω0Þ < ImΣkðiω1Þ on the whole
FS, the system exhibits an insulating behavior by opening
a quasigap at finite temperature. Throughout we use a
shorthand notation, ΔΣk ¼ ImΣkðiω0Þ − ImΣkðiω1Þ, pos-
itive (negative) values of which imply FL (insulator) states.
This characterization loses its meaning in a thermal state
when the first frequency ω1 ¼ 3πT is of the order of the
Fermi energy.
ΣDDMC performs a numerically exact evaluation of the

coefficients an in the Taylor-series expansion of Σ in
powers of U—which at half filling takes on the form

Σkσðiω; T; μ ¼ U=2; UÞ ¼
X∞

n¼1

a2n;kσðiω; TÞU2n ð2Þ

—up to a maximal order n�, the truncation of the series
being the only approximation. In general, reconstructing
ΣkσðiωÞ from its series is a problem by itself [20]. In the
regime of interest, however, the crossover lines are always
within the series convergence radius, and, in principle, the
result can be obtained by taking the sum up to a sufficiently
high n� to ensure that the truncation error is negligible
compared to the statistical error. We are able to compute
fang with statistical errors ≲10% up to order n� ¼ 12
for temperatures T ≥ 0.1 and up to order n� ¼ 10 for
0.025 ≤ T ≤ 0.1. We further extrapolate the series by using
the standard Dlog-Padé-type approximants [38,39] and
verify that the systematic error of the extrapolation pro-
cedure is small compared to the statistical error (see the
Supplemental Material [40]).
Figure 2 illustrates how the crossover diagram, Fig. 1,

was obtained. It shows the variation with U of ImΣðiω0Þ

and ImΣðiω1Þ at the antinodal and nodal points (ReΣ ¼ 0 at
the FS). At U ¼ 2t, the values at ω0 are higher than at ω1,
which is typical for a FL. As U is increased, ΔΣk shows a
trend toward nFL behavior by first changing its sign at kan
(we take it as the onset of the nFL behavior). Following our
measure, we mark the region of U and T where ΔΣk > 0
for all momenta on the FS as FL (red shading). Similarly,
the insulating region (blue shading) corresponds to ΔΣk <
0 for all k on the FS. The nFL pseudogap regime (gray)
falls in between the two: it has ΔΣk > 0 at some momenta
on the FS andΔΣk < 0 at others. Correspondingly, the nFL
state is bounded by the temperature scales TanðUÞ and
TnðUÞ where ΔΣk ¼ 0 at momenta kan and kn, respec-
tively. As the gap proliferates along the FS between TanðUÞ
and TnðUÞ, we expect that the heat capacity CV to T ratio
decreases before growing due to the AFM quasiorder near
the insulator boundary and eventually reaching the asymp-
totic CV=T ∝ T law due to spin waves deep in the
insulating regime.
At small U, both crossover temperatures scale

exponentially according to the BCS solution for the
mean-field AFM transition, Tan ¼ a expð−b= ffiffiffiffi

U
p Þ and

Tn ¼ a0 expð−b0= ffiffiffiffi
U

p Þ, with the fit parameters a ¼ 6.99,
b ¼ 6.51, a0 ¼ 4.7, b0 ¼ 6.08 (see Fig. 1), suggesting the
crossover is being driven by extended AFM correlations.
At high temperature T ≳ 0.25t, the data points corre-

sponding to ΔΣkan;n
¼ 0 lose their meaning as boundaries

between FL, nFL, and insulator regimes (white region in
Fig. 1). Given that ImΣðiωnÞ is a negative-valued function
approaching zero at large frequencies, it is clear that by
increasing T in the FL regime ΔΣ will change the sign,
marking a crossover to the thermal gas, not the nFL,
state. Nonetheless, we plot the results for ΔΣkan;n

¼ 0 at
high temperature as TDL benchmarks for other numerical
techniques.
Providing the controlled extrapolation of finite-system

numerical results to the TDL has been long recognized as
important. Thus far it has been accomplished, in particular,
by large-system-size studies of the 3D Hubbard model near
the AFM Néel transition [41–43]. In 2D, the extremely
slow finite-size scaling due to the exponential growth of the
AFM correlation length near the crossover makes Fig. 1
challenging to reproduce by finite-size methods, even if
they do not suffer from the fermionic sign problem at half
filling (cf. DQMC results for this problem in Ref. [2]). In
the Supplemental Material [40], we further illustrate the
difficulty of obtaining TanðUÞ, TnðUÞ through extrapola-
tion to the TDL by the example of ΣDDMC calculations on
finite-size lattices of dimensions L × L, where any value of
L is accessible at the same computational cost.
To verify our results by an independent method,

we resort to the DCA, which produces unbiased results
after extrapolation to the TDL. At low temperatures, the
extrapolation is extremely challenging. Figure 3 shows
DCA results for ImΣkðiωnÞ at U ¼ 3t, T ¼ 0.12t, and

FIG. 2. Illustration of the FL-to-insulator crossover at
T=t ¼ 0.1: evolution of the self-energy (imaginary part) at the
two lowest Matsubara frequencies ω0 and ω1 at the momentum
kan ¼ ðπ; 0Þ (left panel) and kn ¼ ðπ=2; π=2Þ (right panel) with
increasing U. Colors correspond to FL, nFL, and quasi-AFM
insulator regions of Fig. 1.
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various cluster sizes 16 ≤ Nc ≤ 144. At k ¼ kn (left
panel), the results show the FL behavior for all accessible
system sizes, while the ΣDDMC results are insulatorlike. At
k ¼ kan (right panel), the character changes from FL to
insulating as a function ofNc when cluster sizes exceed 100,
reaching qualitative agreement with the ΣDDMC data.
Bigger clusters are required for a quantitatively accurate
extrapolation. Note that if the data for only Nc ≤ 72 were
available, one would be led to conclude that the state at
U ¼ 3t, T ¼ 0.12t is a FL. [Similarly, in the DQMC study
of Ref. [2], small-system-size data in what is actually a FL
regime show insulatorlike behavior, resulting in a large error
bar of the extrapolation to the TDL.] It is not surprising then
that past work limited to substantially smaller cluster sizes
[10–12] observed theMITatUc > 5t, while theTDL system
is, in fact, already insulating at smaller U. In general, finite-
size effects are less severe at higher T, and a controlled
extrapolation of DCA data to the TDL is feasible: extrapo-
lated DCA results for the crossover temperatures are in
quantitative agreement with ΣDDMC for T ≳ 0.2t (see the
Supplemental Material [40]).
Arbitrary momentum resolution of ΣDDMC allows us to

observe the structure correlations in the momentum space.
Figure 4 shows the Brillouin zone map of ImΣkðω0Þ and
ΔΣk and relates them to the measurable with ultracold
atoms (quasi)momentum distribution nðkÞ at the exper-
imentally relevant T ¼ 0.2t and three values of U that are
seen in Fig. 1 to be in the metallic (U ¼ 2t), nFL
(U ¼ 3.6t), and insulator (U ¼ 4t) regimes, respectively.
As U is increased, jImΣkðω0Þj exhibits relatively small
change away from the FS and grows substantially along the
FS, with the largest value at kan and the smallest within the
FS at kn. At the same time, ΔΣk remains positive for all k
in the metallic regime, but islands of negative values appear
around kan at U ¼ 3.6t [below TanðUÞ]. At U ¼ 4t [below
TnðUÞ], ΔΣk is negative along the whole FS, with the

lowest (most insulatorlike) values around kan. Interestingly,
away from the FS, the change in ΔΣk is opposite: it grows,
becoming more FL-like, upon increasing U. The corre-
sponding nðkÞ shows gradual smearing of the step at the FS
as U increases and the system crosses from the FL to
insulating regime. This smearing is more pronounced
around kan: the diamond-shaped region of occupied states
in the metallic regime shrinks and evolves toward a circle
across the crossover, providing an observable signature of
developing correlations.
In conclusion, we have revealed the scenario of the

metal-to-quasiantiferromagnetic-insulator crossover in the
2D Hubbard model (1) qualitatively different from the MIT
previously suggested for this system [10–12] and in
qualitative agreement with the recent DΓA [2,13] and
DQMC [2] results. The crossover could not be captured
by the small-cluster DMFT restricted to the paramagnetic
solution, predicting the MIT instead. The insulating regime
sets in at all values of U due to extended AFM correlations
that transform the system into the quasi-AFM after an
intermediate nFL pseudogap regime. The quantitative
shape of the crossover is different from that reported in
Refs. [2,13]: it is described by the mean-field AFM
transition at small U and features a nFL regime that
transforms to insulating behavior below U ≈ 4t. All our
results are obtained with controlled accuracy and offer
guidance for precision experiments with ultracold atoms in
optical lattices, as well as unbiased numerical techniques,
in the ongoing effort to describe the phase diagram of the
Hubbard model. In particular, the most nontrivial correlated
regime is realized for 2.5t < U < 4t and temperatures

FIG. 3. Imaginary part of the self-energy obtained by DCA and
compared to ΣDDMC at kn (left) and kan (right) in the insulating
regime, U=t ¼ 3, T=t ¼ 0.12 (cluster sizes are Nc ¼ 16, 64, 72,
128, 144).

FIG. 4. (Quasi)momentum distribution nðkÞ (top row),
ImΣkðiω0Þ (middle row), and ΔΣk (bottom row) in the Brillouin
zone at T ¼ 0.2t and different values of U (columns).
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T ≲ 0.25t. At weaker coupling, U < 2.5t, the low-temper-
ature behavior is governed by the mean-field BCS-type
physics, while at U > 4t the low-temperature state is
expected to qualitatively resemble that of the Heisenberg
model [44]. By continuity of the key mechanism, the long-
range AFM correlations (quantified, e.g., in Ref. [35]), this
qualitative crossover picture is valid in a range of nonzero
next-to-nearest-neighbor hopping t0 and doping δ. The
question of whether the conventional MIT scenario is
realized at certain (large-enough) t0 requires further sys-
tematic investigation.
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