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Superfluid 3He under nanoscale confinement has generated significant interest due to the rich spectrum
of phases with complex order parameters that may be stabilized. Experiments have uncovered a variety of
interesting phenomena, but a complete picture of superfluid 3He under confinement has remained elusive.
Here, we present phase diagrams of superfluid 3He under varying degrees of uniaxial confinement, over a
wide range of pressures, which elucidate the progressive stability of both the A phase, as well as a growing
region of stable pair density wave state.
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While bulk superfluid 3He is exceptionally well under-
stood, both theoretically and experimentally [1], much is
unknown when confinement approaches the scale of the
superfluid coherence length. In the bulk, only two phases
are stable, the so-called A and B phases. The A phase—with
nodes in the gap, as shown in Fig. 1(a)—is stabilized by
strong coupling effects at high pressures [2], whereas the
B phase—with its isotropic gap—dominates the phase
diagram [Fig. 4(a)]. When confined via engineered struc-
tures, the phase diagram is expected to be altered signifi-
cantly. Due to the unconventional p-wave pairing in 3He,
nonmagnetic scattering at surfaces is sufficient to break
Cooper pairs. Thus surface scattering serves to distort and
suppress the order parameter. In fact, under confinement the
B phase is altered to become the planar-distorted B phase,
see Eq. (3), with a suppressed gap at antipodal points on the
Fermi surface [Fig. 1(a)]. Early experiments to explore the
effects of confinement resulted in a variety of observations,
including hints of a new phase transition [3], the complete
elimination of the B phase in favor of the A phase [4],
and modification of the relative stability of the A and B
phases [5,6].
It was realized by Vorontsov and Sauls that this order

parameter suppression due to surface scattering could be
minimized by the formation of domain walls between two
orientations of planar-distorted B phases, Fig. 1(b), when the
confinement lies in a particular range of length scales [7].
Alignment of these domains walls was later predicted to form
the basis of an ordered superfluid phase, deemed the stripe
phase [8].Thestripephase is anexampleof apairdensitywave
(PDW), a state that breaks both gauge and translational
symmetries and is now believed to play an important role
in the cuprate superconductors [9]. The observation of such a
PDW state in superfluid 3He could lead to a deeper under-
standing of this state, and influence understanding of PDWs
in unconventional superconductors [10].

The prediction of Vorontsov and Sauls stimulated
numerous experimental searches, including nuclear mag-
netic resonance (NMR) [11,12], shear micromechanical
resonators [13], and torsional oscillators [14]—with spatial
confinements of 700 nm [11], 1.1 μm [12,14], and 1.25 μm
[13]. Most conclusively, NMR studies have simultaneo-
usly observed signals from two different planar-distorted
B phases. Despite this observation, they have concluded
that their measurements are inconsistent with the stripe
phase, and instead have suggested another PDW with soft
domain walls between localized puddles of a planar-
distorted B phase, which they have termed the polka-dot
phase [12]. To date, it is unclear if these results represent

FIG. 1. (a) Schematic momentum-space representations of the
quasiparticle gaps for the relevant superfluid states under planar
confinement: from left to right, the isotropic B phase, the planar
distorted B phase, and the A phase. (b) Confinement along the
z axis. When Cooper pairs scatter off a wall, the z component Δ⊥
of the order parameter changes sign, which for the planar-
distorted B phase causes pair breaking. This can be minimized
by the formation of domain walls between regions of planar-
distorted B phase with alternating signs of Δ⊥. A regular
arrangement of these domain walls leads to broken translational
symmetry and the PDW state.
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the true thermodynamic phase diagram of superfluid 3He
under uniform confinement, or if they remain complicated
by nonuniformities in the structures, e.g., bowing induced
by pressurization. Here, in an effort to resolve this question,
we use microfabricated fourth-sound resonators [15,16],
which are sensitive indicators of the superfluid fraction, to
explore the generation of spatial order in superfluid 3He.
These devices are fully immersed in liquid and therefore
are mechanically unaffected by pressurization of the 3He.
This allows us to explore the phase diagram up to 28 bar,
revealing signatures of PDW in the phase diagram that have
never been observed. Furthermore, we simultaneously
measure three devices with varying degrees of confine-
ment, in order to map the effect of confinement on the
stability of the PDW state.
The devices used to probe the superfluid phases under

confinement, shown in Fig. 2(a), are microfabricated from
single-crystal quartz, with similar devices having been
previously demonstrated to selectively probe the superfluid
fraction within a nanoscale channel of 4He [15]. They work

by exciting a mechanical resonance in the fluid upon
excitation by a voltage source, Fig. 2(b). This causes a
deflection of the two electrodes—on opposite sides of the
nanoscale cavity—via a strong electrostatic force due to
the small gap between the electrodes. As a result of the
deflection, fluid in the nanoscale channels is pushed out,
which—when driven on resonance—excites a Helmholtz
mechanical mode. In the devices measured here, with
channel depths of 636� 12, 805� 4, and 1067� 7 nm,
the normal fluid is viscously clamped [17]; hence the
frequency ω of the Helmholtz mode is related to the
superfluid fraction ρs=ρ:

ω2 ¼ K

�
ρs
ρ

�
: ð1Þ

K represents terms that involve measured geometric factors
and the calibrated spring constant of the plate and helium
[15]. In this Letter, we have extended this to superfluid
3He by constructing an adiabatic nuclear demagnetization
stage and 3He sample cell [18,19], described further in the
Supplemental Material [20].
To drive the superfluid mechanical mode, we use a

chirped pulse scheme to excite all three devices simulta-
neously and acquire their response in the time domain [27].
Fast Fourier transforming this time domain data allows us
to rapidly acquire the frequency response of the Helmholtz
resonators, and enables the mapping of their frequencies
during adiabatic nuclear demagnetization temperature
sweeps. An example at 12.7 bar is shown in Fig. 2(c).
Three superfluid-mechanical resonances are seen, with
Fano-like character due to the measurement scheme, as
shown in the inset. The highest frequency resonance
corresponds to the 1067 nm device and is assumed to
have a temperature dependence that is indiscernible from
that of the bulk superfluid fraction [28,29], as was found in
Ref. [14]. We use the temperature dependence of the
1067 nm device as a sensitive local secondary thermometer,
which is referenced to both a melting curve thermometer
on the same experimental stage and a tuning fork [30,31]
immersed in the same sample cell. We note that we have
performed sweeps of the drive amplitude, and are in a linear
response regime in all measurements. This also serves to
verify that our drive does not cause heating of the liquid
3He. Thermal effects are discussed further in the
Supplemental Material [20].
The temperature dependence of the superfluid fraction is

known to be an excellent indicator of phase transitions [14].
We show in Fig. 3 portions of temperature sweeps, at
22 bar, demonstrating two phase transitions per device—
suggesting the existence of three stable superfluid phases.
This observation is quite startling, not only as there are only
two phases observed in bulk 3He (in zero magnetic field),
but also that two distinct first-order phase transitions were
not observed in previous NMR or torsional oscillator

FIG. 2. Experimental system and superfluid Helmholtz reso-
nator frequency data. (a) Helmholtz resonator, fabricated out of
single-crystal quartz etched to define the nanoscale confinement,
then deposited with aluminum inside the etched area. (b) Under
an applied voltage the electrodes are slightly displaced towards
each other, pushing the superfluid 3He out of the channel and
exciting the Helmholtz mode. This is detected using a capacitance
bridge that outputs a current that is digitized. (c) Three Helmholtz
resonators, with varying confinement, are wired in parallel and
measured simultaneously using a chirped pulse scheme described
in the text, while warming the sample cell via remagnetization of
the copper nuclear stage [20]. Due to the measurement configu-
ration the resonances appear Fano-like, yet are easily resolved, as
shown in the inset—corresponding to the cross section marked
with the dashed line in the main panel.
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experiments. Instead, those experiments found a single
first-order phase transition that occurred over a broad
temperature range [14], which they attributed to inhomo-
geneous thickness of the superfluid from bowed devices.
Recent NMR experiments at low pressure in a 1.1 μm
device do not show a broad phase transition, yet also do not
observe two first-order phase transitions [12]. This is
reasonable, considering the complete phase diagram that
we show next.
To determine the phase diagram under confinement, and

the relation between our data and previous observations, we
have explored these phase transitions over a wide pressure
range, from 0.35 to 28 bar, and compiled the thermody-
namic warming transitions in Fig. 4. Note, we discuss the
lack of temperature hysteresis between warming and cool-
ing below. In Figs. 4(b)–4(d), the experimentally deter-
mined phase transitions are shown as circles: blue for the
transition to the normal state, and the open and filled green
circles for discontinuities in the superfluid fraction. Smooth
fits to the data points delineate colored regions, and hence
regions of stable phases.
To understand these results, we theoretically model the

system using a Ginzburg-Landau approach. Superfluid 3He

is a spin-triplet p-wave superfluid characterized by the
Cooper pair amplitude

Δαβðp̂Þ ¼ AμjðiσμσyÞαβp̂j ð2Þ

between fermions of spin α, β and relative momentum p̂,
where σx, σy, σz are the Pauli spin matrices and Aμj is a
3 × 3 matrix order parameter. We numerically solve the
Ginzburg-Landau equations for Aμj in a slab geometry
following the formalism of Refs. [34,36], which incorpo-
rates confinement effects [37] as well as strong coupling
corrections [38]. The depairing effect of surface roughness
[39] on the cavity walls is taken into account through
diffuse scattering boundary conditions. The order para-
meter profile is assumed to be z dependent to account for
confinement effects, but translationally invariant in the
plane of the device (x-y plane). Two such uniform
phases are known to be stabilized under confinement,
the planar-distorted B phase with order parameter

ApdB
μj ðzÞ ¼

0
B@

ΔkðzÞ 0 0

0 ΔkðzÞ 0

0 0 Δ⊥ðzÞ

1
CA

μj

; ð3Þ

and the A phase, with order parameter

AA
μjðzÞ ¼

0
B@

0 0 0

0 0 0

ΔðzÞ iΔðzÞ 0

1
CA

μj

: ð4Þ

Strong coupling corrections are necessary to account for
the stability of the A phase relative to the planar phase,
i.e., Eq. (3) with a vanishing z component of the order
parameter, Δ⊥ ¼ 0.
We include the known bulk phase diagram in Fig. 4(a)

for comparison, with the B phase in blue and the A phase
in pink. The leftmost black curve in panels (b)–(d) is the
calculated phase boundary between the planar-distorted
B phase and the A phase, while the black curve on the right
is the calculated pressure-dependent critical temperature
TcðPÞ. The excellent agreement between theory and experi-
ment in panels (b)–(c) and to a lesser extent (d), as well as
comparison with the bulk phase diagram, unambiguously
suggest the blue and pink regions in the phase diagrams
under confinement are the planar-distorted B phase
and A phase, respectively. However, under the assumption
of translational invariance in the x-y plane, the Ginzburg-
Landau analysis does not capture the experimentally
observed grey region that lies between the two uniform
phases.
In light of recent experimental and theoretical work,

a clear candidate for this intermediate region is a
spatially inhomogeneous phase exhibiting domain walls
across which the z-component Δ⊥ of the superfluid order

FIG. 3. Enlargement around phase transitions for 22 bar data.
(a) Cooling run with phase transitions in the 1067 nm device
(upper trace) and 805 nm device (middle trace) marked with blue
dashed lines. (b) Same as in (a) but for a warming run and phase
transitions marked with red dashed lines. Note that (a) and (b) are
on the same scales and the dashed lines cross both panels to
emphasize that there is no significant temperature hysteresis
between warming and cooling in our experiments. The hysteresis
in shape of the transitions can be understood from the evolution
of latent heat at first order phase transitions, as observed in the
shape hysteresis between the A and B phases in bulk superfluid
3He [32,33]. Observation of two first-order phase transitions
demonstrates not only that the PDW state at intermediate
temperatures is stable [34], but the lack of hysteresis points to
an intermediate phase between the A and planar distorted B
phases that eliminates supercooling [14,35].
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parameter changes sign, see Fig. 1(b). While in bulk 3He
such domain walls [40,41] are not energetically favorable,
for device thicknesses D of order the coherence length ξ,
the energy cost of creating a domain wall can be compen-
sated by the reduction in gradient energy associated with
surface pairbreaking. Everywhere on the domain wall, Δ⊥
vanishes due to the change of sign and is thus uniform
along the confinement direction, which reduces this energy.
For sufficiently thin devices the gain in energy from the
reduction in surface pairbreaking outweighs the cost from
domain wall surface tension, and domain walls are favored.
The enhanced stability of the grey region with increasing
degree of confinement, observed in Figs. 4(b)–4(d) and
predicted in Ref. [34], thus further supports the interpre-
tation of this region as a spatially inhomogeneous phase.
It is noteworthy that such a spatially inhomogeneous

phase can only exist between the A and B phases, as
discussed in Ref. [34], strengthening our assignment of the
intermediate phase as a PDW state. The stabilization of
domain walls in the vicinity of the A-B phase boundary can
be understood from the following generic argument. Upon
approaching the A-B phase boundary from the planar-
distorted B phase, Δ⊥ is gradually reduced. Deep in the
planar-distorted B phase, suppressing Δ⊥ on a domain wall
is not energetically favorable, but becomes increasingly so
upon approach to the transition. In the A-phase, Δ⊥ ¼ Azz
is uniformly zero due to the different symmetry of the
phase; see Eq. (4); thus surface pair breaking is automati-
cally minimized without the need for domain walls. Near
the A-B phase boundary, the free energies of the A phase
(with Δ⊥ ¼ 0) and B phase (with Δ⊥ ≠ 0) are nearly
degenerate, and an inhomogeneous state with a regular
arrangement of domain walls is a natural way to resolve the
competition between the two different bulk ordering
tendencies for Δ⊥.

While this argument alone cannot predict the optimal
spatial arrangement of domain walls, previous studies
strongly suggest periodic patterns of ordering are favored.
Explicit calculations [8,34,42] using either quasiclassical
Green’s functions or the Ginzburg-Landau approach, and
for a variety of boundary conditions ranging from specular
to maximally pairbreaking, indicate a periodic arrangement
of domain walls forming a unidirectional PDW phase
(stripe phase) can be stabilized at low pressures under
confinement near the A-B phase boundary for slab thick-
nesses D ∼ 10ξ. However, NMR studies [12] favor an
interpretation in terms of a two-dimensional PDW phase—
the polka-dot phase—with the symmetry of a square or
triangular lattice. In the pressure range 0–15 bar the PDW
phase appears in our devices in a temperature range such
that 8≲D=ξ≲ 18, in broad agreement with theory expect-
ations for the stripe phase, but unexpectedly persists at
pressures up to 30 bar, at least in the two thinnest devices.
Our current experiments cannot resolve the stripe–polka-

dot debate, but do indicate that the PDW state observed
here is thermodynamically stable from the fact that it is
seen reproducibly both on warming and on cooling, as
shown for example in Fig. 3. It is also noteworthy that we
observe no significant hysteresis in the temperatures of
phase transitions between the A phase and the PDW state,
nor between the PDW state and the planar-distorted B
phase, despite the fact that these are first-order phase
transitions for which supercooling would be expected—
especially as significant supercooling between the A and B
phases is routinely observed in bulk 3He. The lack of
hysteresis is consistent with recent torsional oscillator
experiments [14]. In that work, the existence of an unseen
spatially modulated phase was suggested to account for
the lack of hysteresis. This can be understood by the
presence of an intermediate phase between the A and B

FIG. 4. Pressure (P)-temperature (T) phase diagrams of superfluid 3He, on warming. (a) Bulk phase diagram shown for reference, with
the A phase (pink) and B phase (blue). Phase diagrams for (b) 1067 nm, (c) 805 nm, and (d) 636 nm confinements are shown with A
phase (pink) and planar-distorted B phase (blue). Under confinement, a new phase appears, which we have colored grey. As the
confinement increases from left to right, the width of the grey region grows, as does the stability of the A phase. Ginzburg-Landau
calculations, including strong coupling corrections [34,38] and the effect of confinement [37] with diffuse boundary conditions
[illustrated schematically in the inset of (b)], are included as the black curves—without any adjustable parameters. The PDW must lie
between the A phase and the planar distorted B phase [8,34]; hence the grey region is concluded to be the stable PDW state.

PHYSICAL REVIEW LETTERS 124, 015301 (2020)

015301-4



phases (the PDW) lowering the nucleation barrier between
these states [35].
Finally, we note that we have observed an anomalous

region in the 636 nm device between pressures of 0.95–
4.10 bar, as seen in the light pink region of Fig. 4(d).
Whereas the rest of our phase transitions are fully repro-
ducible, in this region we find that on some runs we observe
transitions to the A phase as expected, yet on occasion we
find that the transition occurs at a reduced temperature.
Further experiments are required to elucidate the behavior
of this region and will be the subject of future work.
In conclusion, we have mapped the phase diagrams of

superfluid 3He under nanoscale confinement and have
demonstrated the existence of a thermodynamically stable
PDW state, breaking both gauge and translational sym-
metry. The stability of both the A phase and the PDW state
grow with increasing confinement, consistent with, and
serving to reconcile, previous experiments, e.g., the stabi-
lization of the A phase with increasing confinement in
Refs. [4–6]. Nonetheless, questions remain. What is the
nature of the anomalous region at low pressure in the
636 nm device? Furthermore, as the Helmholtz resonators
excite longitudinal (fourth) sound, can we use these to find
spectroscopic signatures of the PDW, i.e., order-parameter
collective modes [43]? Finally, our Helmholtz resonators
may be capable of observing evidence of Majorana
fermions associated with Andreev bound states at surfaces
[29,44–47] and at the domain walls that make up the PDW
observed here, through the superfluid fraction [29] or
collective modes [48,49]—a tantalizing possibility for
future experiments.
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