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In a previous Letter, we derived fundamental limits to radiative heat transfer applicable in near- through
far-field regimes, based on the choice of material susceptibilities and bounding surfaces enclosing
arbitrarily shaped objects; the limits exploit algebraic properties of Maxwell’s equations and fundamental
principles such as electromagnetic reciprocity and passivity. In this Letter, we apply these bounds to two
different geometric configurations of interest, namely dipolar particles or extended structures of infinite
area in the near field of one another. We find that while near-field radiative heat transfer between dipolar
particles can saturate purely geometric “Landauer” limits, bounds on extended structures cannot, instead
growing very slowly with respect to a material response figure of merit (an “inverse resistivity” for metals)
due to the deleterious effects of multiple scattering between bodies. While nanostructuring can produce
infrared resonances, it is generally unable to further enhance the resonant energy transfer spectrum beyond
what is practically achieved by planar media at the surface polariton condition.
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Radiative heat transfer (RHT) between two bodies may
be written as a frequency integral of the form

P ¼
Z

∞

0

jΠðω; TBÞ − Πðω; TAÞjΦðωÞdω ð1Þ

where Πðω; TÞ is the Planck function and ΦðωÞ a dimen-
sionless spectrum of energy transfer. RHT between two
objects sufficiently separated in space (d ≫ ℏc=kBT)
follows the Planck blackbody law, but in the near-field
where separations are smaller than the characteristic ther-
mal wavelength of radiation, contributions to RHT from
evanescent modes often dominate, allowing ΦðωÞ to
exceed the far-field blackbody limits by orders of magni-
tude. Moreover, because the Planck function decays expo-
nentially with frequency, judicious choice of materials and
nanostructured geometries can yield resonances in Φ at
lower (especially infrared) frequencies, allowing observa-
tion of even larger integrated RHT powers [1–5]. However,
after accounting for the effects of such tailoring, the degree
to which the spectrum Φ at a given frequency can be
enhanced remains an open question. The inability of trial-
and-error explorations and optimization procedures [6,7]
to saturate prior bounds on Φ based on modal analyses
[8–11] or energy conservation [12] suggests that these prior
bounds are too loose.
In a complementary Letter [1], we derived new bounds

that simultaneously account for material and geometric
constraints as well as multiple scattering effects. These
bounds, valid from the near- through far-field regimes,
incorporate the dependence of the optimal modal response
of each object on the other while simultaneously being
constrained by passivity considerations in isolation. They

depend on a general material response factor (“inverse
resistivity” for metals) [12],

ζ ¼ jχj2
ImðχÞ ; ð2Þ

without making explicit reference to specific frequencies
or dispersion models, and are domain monotonic, increas-
ing with object volumes independently of their shapes.
Consequently, our bounds are applicable at all length
scales, from quasistatic to ray optics regimes, do not suffer
from unphysical divergences with respect to vanishing
material dissipation or object sizes [12], and can be tailored
to account for specific object shapes as needed.
In this Letter, we apply the aforementioned bounds on

the spectrum Φ to two situations of practical interest,
comparing predictions to prior bounds based on energy
conservation [12], tight only in the quasistatic regime, or
Landauer-like modal summations [8–11], tight only in
regimes where material dissipation effects can be ignored.
Specifically, we consider limits on RHT between dipolar
particles as well as extended structures of infinite area and
arbitrary shapes restricted to the near-field: domain monot-
onicity means that a bound on a planar domain of infinite
extent is a bound on any nanostructured geometry con-
tained within. We find that our exact bound for dipolar
particles is able to reach Landauer limits when ζ exceeds a
certain threshold; in contrast, bounds that neglect the
interplay between material and radiative constraints over-
estimate possible material enhancements, diverging with
increasing ζ. For extended structures, we find that the
bound grows only weakly (logarithmically) with respect to
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ζ, making the neglect of the interplay of material and
geometric constraints even more apparent. Fundamentally,
previous limits [12], in analogy with Kirchhoff’s law [2,4],
assumed that thermal fields produced within a given body
in isolation can be perfectly absorbed by others in prox-
imity, while neglecting the extent to which multiple
scattering between bodies counteracts such absorption,
explaining the aforementioned performance gap. Finally,
we discuss practical implications and design guidelines for
structures enhancing NFRHT: nanostructuring improves P
by tailoring infrared resonances in Φ, but cannot signifi-
cantly enhance Φ at peak values beyond that seen in
resonant planar media. While our bounds apply directly to
the spectrum Φ, they can be generalized to heat transfer
over finite bandwidths assuming the spectrum at each
frequency can be optimized independently.
General bounds.—We now briefly recapitulate the

bounds on RHT between bodies A and B derived in detail
in [1] and describe their salient features. These bounds are
derived for bodies p ∈ fA;Bg with arbitrary homogeneous
local isotropic susceptibilities χp and arbitrary shape and
size. They depend on material constraints, particularly
passivity (nonnegativity of far-field scattering by each object
in isolation and in the presence of the other), encoded in the
material response factors ζp ¼ jχpj2=ImðχpÞ, and on geo-
metric constraints encoded in the off-diagonal vacuum
Maxwell Green’s function Gvac

BA , which solves ½ðc=ωÞ2∇×
ð∇×Þ − I�Gvac ¼ I. In particular, the bounds rest on the
singular values fgig, which we term “radiative efficacies,”
obtained from a singular-value decomposition,

Gvac
BA ¼

X
i

gijbiihaij; ð3Þ

where jaii and jbii are the corresponding right and left
singular vectors, respectively. The radiative efficacies mea-
sure how strongly these bases are coupled by electromag-
netic waves, and are domain monotonic, increasing with
increasing domain volume even (surprisingly) beyond the
near-field.
We list the relevant bounds in Table I. The main results of

this paper rely on the upper boundΦopt, which we refer to as
an “exact bound” in that it is valid from the near- through far-
field regimes, though below we focus only on near-field
effects.Φopt is domain monotonic in that it always increases
with increasing object volumes, and this comes from the
domain monotonicity of gi. Therefore, one can choose to
evaluate the bound in a domain of high symmetry enclosing
the objects of interest, representing a fundamental geometric
constraint in analogy and in combination with material
constraints imposed by a specific choice of ζp. We clarify
that interference andwave effects will of course be important
to computing the actual spectrumΦ for two specific objects,
but these effects are somewhat less immediately relevant for
computing Φopt between generic domains.

The expression for Φopt shows that optimal heat transfer is
achievable if the modes of the response of each body
coincide with the modes of the vacuum Green’s function
Gvac
BA (whereas using the modes of the total Green’s function

GBA would yieldΦ itself for a specific system, not a general
bound on Φ). For each channel i, each term may be
physically interpreted as follows. The first term 1=2π,
which is the maximum per-channel contribution to Φopt,
corresponds to the per-channel Landauer limit [8–11,13,14].
A given channel i attains this only if ζAζBg2i ≥ 1, meaning
that while certain channels efficiently couple electromag-
netic fields propagating in vacuum between the two bodies
can readily saturate their Landauer limits, other channels
instead require larger material response factors ζp for this to
occur. In contrast, the total Landauer bound ΦL assumes
saturation of every channel i (the first term) regardless of
material response or geometric configuration. The second
term ð2=πÞ½ζAζBg2i =ð1þ ζAζBg2i Þ2� never exceeds the per-
channel Landauer limit of 1=2π due to material limits, and
corresponds to each body attaining its maximum absorptive
response in isolation for the respective incident fields jaii
and jbii for channel i in order to satisfy passivity con-
straints; the numerator corresponds to the contribution from
absorption of each body in isolation, while the denominator
captures multiple scattering effects between bodies. Note
that if material-limited contributions were to be taken over
all channels, not just those for which ζAζBg2i < 1, this
would represent perfect absorption by each body in isolation
for all channels. Such a situation can arise for bodies near
polaritonic resonances, so we use this as a metric for how
close Φ for uniform polaritonic media in each domain can
practically approach Φopt. The “quasistatic bound” Φqs

accounts for material response constraints but neglects
the effects of multiple scattering between bodies, so it is
tight only in quasistatic systems, and its contributions per
channel may be unbounded [12]. In [1], we proved that
these bounds satisfy the inequalities

Φopt ≤ Φqs;ΦL; ð4Þ

TABLE I. Summary of various bounds on NFRHT limits. Φopt
captures radiative and geometric constraints via the singular
values fgig of the vacuum Green’s function Gvac

BA , and material
constraints via the response factors ζp ¼ ½jχpj2=ImðχpÞ� for
p ¼ fA; Bg. Θ is the Heaviside step function. As described in
the main text, restricted versions of Φopt each capture different
facets of this bound.

Bound Formula
Material
factor

Bounded per
channel

Φopt
P

ið1=2πÞΘðζAζBg2i − 1Þ
þP

ið2=πÞ½ζAζBg2i =ð1þ ζAζBg2i Þ2�
Θð1 − ζAζBg2i Þ

Yes Yes

Φqs
P

ið2=πÞζAζBg2i Yes No
ΦL

P
ið1=2πÞ No Yes
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regardless of the particular bounding domain. Thus, we
compare them for specific topologies of interest in the
asymptotic near-field (nonretarded) regime.
Dipolar bodies.—We first consider NFRHT between

either two dipolar particles or a dipolar particle and an ex-
tended bulk medium of infinite area and thickness [Fig. 1(a)],
enclosed within spherical or semi-infinite bounding domains,
as detailed in the Supplemental Material [15]. The dipolar
limit implies that ifV is the volume of a dipolar particle and d
is the separation from the other body, then V1=3=d ≪ 1, and
no higher-order particle multipoles should matter. This also
implies that there areonly three degrees of freedomor singular
values (i.e., polarizations) and therefore three channels. In
either case, we can immediately write the Landauer limit as
ΦL ¼ 3=2π. The asymptotic near-field (nonretarded) radia-
tive efficacies are g1 ¼ g2 ¼

ffiffiffi
κ

p
=4π and g3 ¼ 2g1 for two

dipolar domains of volumes VA;B and separation d with
κ ¼ VAVB=d6, and g1 ¼ g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=64π

p
and g3 ¼

ffiffiffi
2

p
g1 for

a dipolar domain of volume V at a distance d above a semi-
infinite planar bulk domain with κ ¼ V=d3.
In both cases, the quasistatic bound depends linearly on

the product ζAζB, which explainswhy for increasingmaterial
response factors (assuming fixed volumes and separations)
the bound eventually crosses the Landauer limits and never
saturates. By contrast, Φopt monotonically approaches ΦL

from below with increasing material response factors (e.g.,
small dissipation). We note that whether the dipolar volume
is near another or an extended domain, the smallest two
radiative efficacies are equal to each other and correspond to
the two axes perpendicular to the line of separation, while the
largest radiative efficacy is larger than the smaller two by
different factors depending on the particular case. This
dependence implies that for the Landauer bounds to be fully
saturated, the optimal net response of each body cannot be
isotropic, even though the underlying susceptibilities are
assumed to be isotropic; the optimal dipole should instead
arise for an oblate ellipsoidal shape whose aspect ratio is a

function of gmax=gmin, while the optimal extended structure
(assuming an isotropic particle) should be textured in order to
break homogeneity. However, in both cases, if the material-
limited contributions ð2=πÞ½ζAζBg2i =ð1þ ζAζBg2i Þ2� are
used for every channel, the resulting Φ is only 10% smaller
than Φopt at

ffiffiffiffiffiffiffiffiffiffiffiffi
ζAζBκ

p
≈ 10, where the dipolar particle size is

comparable to the skin depth. Such a situation arises when
the surface polariton condition is met, corresponding to
Reð1=χÞ ¼ −1=2 for a uniform planar bulk or Reð1=χÞ ¼
−1=3 for an isotropic dipolar sphere. Thus,we find that given
appropriate polaritonic materials, nanostructuring enhances
Φ little over uniform high-symmetry structures.
Extended structures.—We now consider NFRHT

between two extended structures of infinite area A sepa-
rated by a distance d. In this case, there is an infinite
continuum of participating channels, labeled by the two-
dimensional in-plane wave vector k, and the sum over
channels i becomes

P
i → A∬ ½d2k=ð2πÞ2�. Furthermore,

even after normalizing to the area, the Landauer bound
ΦL=A ¼ ∬ ð1=2πÞ½d2k=ð2πÞ2� diverges, so we do not con-
sider it further. The remaining bounds Φopt and Φqs, after
multiplying by a common factor of d2=A, only depend on
the product of material factors

ffiffiffiffiffiffiffiffiffiffi
ζAζB

p
and on no other

length scales in the near-field.
As we show in the supplement [15], the asymptotic near-

field (nonretarded) radiative efficacies gðkÞ ¼ e−jkjd=2 for
two planar semi-infinite bounding regions yield simple
analytical forms for the bounds, with

Φopt ×
d2

A

¼ 1

4π2
ln

�
1þ ζAζB

4

�
þΘðζAζB − 4Þ

8π2

×

�
lnðζAζBÞ þ

1

4

�
ln

�
ζAζB
4

��
2

− 2 ln

�
1þ ζAζB

4

��
;

ð5Þ
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FIG. 1. Comparison ofΦopt (orange) toΦqs (purple) for (a) two dipolar bodies of volumes VA;B (thin lines, κ ¼ VAVB=d6) or a dipolar
of volume V body and an extended structure (thick lines, κ ¼ V=d3), (b) two extended structures of infinite thickness and area A, or
(c) or two extended structures of finite thickness h. ΦL is also shown in (a). Note that bounds between two extended structures are
normalized by A=d2.
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while Φqs × d2=A ¼ ζAζB=ð16π2Þ. As observed in
[Fig. 1(b)], both bounds converge to one another for small
ζAζB. As ζAζB increases, the quasistatic bounds overesti-
mate the extent to which NFRHT can be optimized due
to its simple linear dependence on ζAζB, while the exact
bound grows with respect to ζAζB in a much slower
logarithmic fashion. Moreover, in (5), the first term
represents the material-limited contributions for every
channel k, achievable by homogeneous isotropic planar
bulk media at the surface polariton resonance condition
Reð1=χÞ ¼ −1=2. The correction due to progressive satu-
ration of the Landauer bounds, given by the second term in
(5), diverges (due to the divergent ΦL) so slowly that for
practically achievable ζ, Φopt is essentially achieved by
planar polar dielectric bulk media. Thus, even more so than
for dipolar bodies, there is very little room for enhancingΦ
through nanostructuring compared to what can be achieved
by planar polar dielectric media.
We also evaluate Φopt and Φqs for planar films of finite

thickness h [Fig. 1(c)], where each of these bounds only
depends on d and h via the common term A=d2 and a
function that depends only on ζAζB and the ratio h=d. Here,
the radiative efficacies are gðkÞ ¼ ðe−jkjd=2Þð1 − e−2jkjhÞ.
We find that for thin films (compared to the separation),
Φopt converges to Φqs for decreasing thickness at each
value of ζ ¼ ffiffiffiffiffiffiffiffiffiffi

ζAζB
p

, consistent with decreasing multiple
scattering between bodies. However, as the thickness
increases even to h=d ≈ 0.1, each of these bounds quickly
approaches its respective bulk asymptote (the limit
h=d → ∞). Moreover, the logarithmic scale on the plot
makes clear that these asymptotic values of Φqs grow
linearly with ζAζB, whereas the corresponding growth of
Φopt is logarithmic. Note that if the material-limited
contributions were instead used for every channel, repre-
senting planar films of finite thickness at the surface
polariton resonance condition (depending on h), the result
Φ would be practically indistinguishable from Φopt. This
again suggests that while reaching the exact bounds for a
given thickness h would require nanoscale texturing, the
bounds can be practically reached by planar films of the
same thickness and appropriately chosen materials, in line
with previous observations restricted to one-dimensionally
periodic media [17].
Having considered bounds for generic materials with

arbitrary ζ, we now turn to bounds for realistic materials of
susceptibility χðωÞ [using the corresponding definition of
ζðωÞ]. In particular, we compare the power spectrum
ΦplanarðωÞ × d2=A associated with identical planar films
[6,12] to the exact and quasistatic bounds in Fig. 2,
specifically considering gold (Au), doped silicon (Si),
and silicon carbide (SiC) as representative materials. The
largest heat transfer observed in specific nanostructured Au
[18] and Si [7] surfaces studied in the past are also included
for comparison. (We employ Drude dispersions for Au [18]

and Si [7], and a phonon polaritonic dispersion for SiC
[19].) In the infrared where the Planck function is consid-
erable (at typical experimental temperatures, T ≲ 1000 K),
Φqs for all of these materials is significantly larger than the
corresponding Φopt and is highly sensitive to material
dispersion; as a specific example, the quasistatic bound
for Au lies significantly above the upper limits of the plot
over the entire range of frequencies shown. By contrast, the
logarithmic dependence of Φopt on ζ means that it will
generally be much less sensitive to changes in material
dispersion except near polariton resonances, which Si and
SiC feature in the infrared. We find that Φplanar is con-
sistently much smaller than eitherΦqs orΦopt for Au owing
to the lack of infrared resonances; the Au nanostructures of
[18] improve on the results for plates by two orders of
magnitude, but still fall more than two orders of magnitude
shy of Φopt at that frequency. The outlook is more
pessimistic for polar dielectrics like doped Si or SiC. In
[7], nanostructuring Si into a metasurface increases the
integrated NFRHT power P by creating lower-frequency
resonances in Φ. However, this does not increase the peak
values of Φ above Φplanar, which never reaches its bound
because the dispersion of Si prohibits the planar surface
plasmon resonance condition Reð1=χÞ ¼ −1=2 from being
reached. Meanwhile, SiC plates exhibit a power spectrum
Φplanar that nearly touches Φopt at two points, the smaller
of which is the material resonance where the losses become
so large that Φopt and Φqs coincide (as we have that
shown multiple scattering between bodies becomes irrel-
evant for large dissipation), and the larger of which is a
polaritonic resonance where Φopt is nearly constant while
Φqs is larger by a factor of 50. We note that for each of
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FIG. 2. Comparison of ΦqsðωÞ (purple) and ΦoptðωÞ (orange)
for extended bodies to planar heat transfer ΦplanarðωÞ (black) at
frequencies ω relevant to the Planck function at typical exper-
imental temperatures, corresponding to Au (dot-dashed), doped
Si (dashed), and SiC (black). Also shown with labeled dots are
the maximum Φ of representative nanostructured Au [18] and
doped Si [7] surfaces. Φqs for Au is several orders of magnitude
above the plotted range.
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these materials at polaritonic resonances, Φplanar×d2=A¼
ð1=4π2Þln½1þðζAζB=4Þ� is exactly the material-limited
contribution to (5), which is only marginally smaller than
the squared logarithmic dependence of Φopt as a whole.
Concluding remarks.—The results above suggest that

apart from tailoring resonances in the infrared to improve P
(especially useful for metals), nanostructuring of either
dipolar or extended media cannot produce significantly
better results for Φ than resonant spherical or planar
objects, eventually saturating or exhibiting a logarithmic
dependence on ζ ¼ jχj2=ImðχÞ in each case. At first glance,
this is a surprising contrast to the success of nanostructur-
ing in enhancing the local density of states [20]. This
dichotomy can be understood as a consequence of finite-
size effects: a dipole radiator does not scatter fields and
hence an infinite number of modes can participate in
absorption, but this cannot hold for objects of finite size.
While we have focused on NFRHT at individual reso-

nance frequencies, our bounds can easily be extended to
integrated RHT P via (1), specifically by defining Popt ¼R
∞
0 jΠðω; TBÞ − Πðω; TAÞjΦoptðωÞdω and using compari-
sons like Fig. 2 to guide such assessments, given that Popt

will depend on the material dispersion properties under
consideration. Typically, P is increased by exploiting
narrow resonances of bandwidth Δω ∼ ω½ImðχÞ=jχj� in
the spectrum Φ in low-loss materials, so this permits
approximate bounds on the integrated heat transfer [12],

Popt ≈
ωImðχÞ
jχj ΦoptðωÞjΠðω; TBÞ − Πðω; TAÞj; ð6Þ

for two bodies of the same susceptibility χ. For dipolar
bodies,Φopt reaches a maximumwith respect to ζ and never
diverges, while for extended structures the divergence is
logarithmic. Hence, beyond a threshold, any increase in
Φopt from larger material response will be accompanied by
a corresponding decrease in Δω. This suggests that
regardless of object sizes, there exists an optimal ζ
maximizing P at a finite value. Further constraints could
be obtained through stronger sum rules arising from
frequency integration [21], the subject of future work.
Finally, we emphasize that while the above analyses

focused on the near-field, which can be justified for small
enough separations (d ≪ ℏc=kBT), Φopt is in general finite
at every length scale, whereas Φqs often diverges beyond
the near-field. That said, as discussed in [1], our bounds do
not explicitly include the effects of far-field radiative
losses, which in conjunction with multiple scattering
between bodies should provide even tighter bounds.
Additionally, similar bounds could be derived for other
problems in fluctuational electromagnetism, including
fluorescence energy transfer [22] and Casimir forces
[23], the subject of future work.
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