
 

Detector-Agnostic Phase-Space Distributions

J. Sperling ,1,* D. S. Phillips,2 J. F. F Bulmer,2 G. S. Thekkadath,2 A. Eckstein,2 T. A.W. Wolterink,2 J. Lugani,2

S. W. Nam,3 A. Lita,3 T. Gerrits,3 W. Vogel,4 G. S. Agarwal,5 C. Silberhorn,1 and I. A. Walmsley2
1Integrated Quantum Optics Group, Applied Physics, University of Paderborn, 33098 Paderborn, Germany

2Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
3National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
4Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23, D-18059 Rostock, Germany

5Texas A&M University, College Station, Texas 77845, USA

(Received 28 April 2019; published 9 January 2020)

The representation of quantum states via phase-space functions constitutes an intuitive technique to
characterize light. However, the reconstruction of such distributions is challenging as it demands specific
types of detectors and detailed models thereof to account for their particular properties and imperfections.
To overcome these obstacles, we derive and implement a measurement scheme that enables a
reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on
the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our
theory presents a generalization of well-known phase-space quasiprobability distributions, such as the
Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors
without performing a detector characterization. Based on our approach, we reveal the characteristic features
of heralded single- and two-photon states in phase space and certify their nonclassicality with high
statistical significance.
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Introduction.—The characterization of quantum light is a
main challenge one encounters when implementing clas-
sically infeasible tasks, such as quantum communication
protocols [1–3]. On a more fundamental level, studying the
peculiarities of quantized radiation fields leads to a pro-
found understanding of the role of quantum physics in
nature in general, and how it is distinct from classical wave
theories in particular. As in classical systems, quantum-
optical phase-space distributions offer a versatile instru-
ment to directly visualize unique features of nonclassical
light, such as demonstrated for squeezing [4–6]. Moreover,
negativities in certain phase-space functions directly point
at quantum properties of light; see, e.g., Refs. [7–12]. For
the above reasons, the representation of quantum light in
phase space is one of the most frequently applied methods
to characterize nonclassical light.
However, the estimation of phase-space distributions

from experimental data is a cumbersome task. Con-
sequently, this reconstruction problem inspired a wide
range of research [13–15], leading to sophisticated ana-
lytical tools, such as solving inversion problems [16,17],
employing diverging pattern functions [18,19], performing
maximum-likelihood estimations [20–22], and using data
pattern recognition [23,24]. In addition, each family of
detection devices has to be equipped with its own precise
model to reliably extract information about phase-space
functions [13–15]. This treatment comprises a comprehen-
sive analysis that assesses (i) how a detector responds to

incident light [25,26], including, e.g., nonlinear detection
responses [27,28], and (ii) how the light absorption is
influenced by a number of possible imperfections, e.g.,
efficiencies [29,30]. Moreover, applying these methods can
also require universally applicable, yet rather demanding
theoretical and experimental techniques in practice, such as
performing detector tomography and calibration [31–39].
Despite these challenges, phase-space distributions con-

stitute a highly successful approach to revealing nonclassical
properties of light [7–12]. For example, s-parametrized
quasiprobabilities [40,41], as well as their non-Gaussian
generalizations [42,43], can exhibit negativities that are
incompatible with classical light. Even if a phase-space
function does not exhibit negativities, observable patterns
render it possible to identify quantum features, for instance,
via the non-negative Husimi function [44–46] or through
marginal distributions [47,48]. Because of its success, the
concept of phase-space functions has been further extended
to other physical scenarios; see Refs. [49,50]. To name a few,
atomic ensembles [51–54] and entanglement [55–57]
have been successfully characterized using quasiprobability
distributions. Nevertheless, there remains a dependency
on well-defined detection schemes and reconstruction
algorithms.
In this contribution, we circumvent the reconstruction

problem by devising a measurement protocol that results
in detector-agnostic phase-space (DAPS) distributions,
which can be directly estimated, encompass known
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quasiprobabilities, and apply to arbitrary quantum states of
light. We demonstrate our scheme with transition-edge
sensors (TESs), which have sophisticated physics under-
lying their operation, and analyze our data without relying
on any specific detector models. Our DAPS functions
reveal nonclassical features expected from our heralded
multiphoton states with high statistical significance.
Moreover, the measurement of vacuum alone enables us
to predict the unique structures of DAPS distributions as
demonstrated for our experimentally generated states.
Theory framework.—Our measurement scheme is a

combination of unbalanced homodyning [58] and a multi-
plexed detection layout [59]; see Fig. 1. A signal light field,
ρ̂, is mixed with a local oscillator (LO), jβi, on a beam
splitter. One of the output states, represented through ρ̂ðβÞ,
is injected into a multiplexing scheme that consists of S
steps. In each step, light is split into output fields with the
same intensity, which then can be split again. The finally
obtained N ¼ 2S output beams are individually measured
with unknown detectors, which are not specified but
assumed to operate in the same manner. Each detector
returns one of the possible outcomes K ¼ f0;…; Kg. In
Refs. [60,61], we have shown for the multiplexing part that
independently of the detector response, the probability to
simultaneously measure Nk times the outcome k
(∀ k ∈ K) follows a quantum version of the multinomial
distribution; its generalization to ρ̂ðβÞ reads

cN0;…;NK
ðβÞ¼

�
∶

N!

N0! � ��NK!
π̂N0

0 �� � π̂NK
K ∶

�
ρ̂ðβÞ

; ð1Þ

where ∶ � � � ∶ denotes the normal ordering and fπ̂gk∈K is the
unknown positive operator-valued measure of the detectors.
The only assumptions made are a balanced splitting in

the multiplexing and identical response functions for the N
detectors, including all imperfections. We can account for

deviations from both assumptions by including a systematic
error, directly estimated from asymmetries in the measured
data; see Supplemental Material (SM) for details [62].
A probability distribution is entirely characterized

through its generation function, which can be expressed as

gz0;…;zK ðβÞ ¼
X

N0;…;NK

zN0

0 � � � zNK
K cN0;…;NK

ðβÞ

¼ h∶ðz0π̂0 þ � � � þ zK π̂KÞN∶iρ̂ðβÞ; ð2Þ

for z0;…; zK ∈ R. The second line is a result of the
multinomial form of the statistics in Eq. (1). One salient
feature is that classical light fields have a non-negative
generation function gz0;…;zK . To see this, first recall that a
classical light field is described through a non-negative
Glauber-Sudarshan distribution [66,67], which is not
affected by displacements and describes a state as a
statistical mixture of coherent states. Furthermore, for all
even N, we can define the operator f̂ ¼ f̂† ¼ ðz0π̂0 þ
� � � þ zK π̂KÞN=2. Since for any non-negative Glauber-
Sudarshan function h∶f̂†f̂∶i ≥ 0 holds true [63,68–70],
we conclude

gz0;…;zK ðβÞ≥
cl:
0: ð3Þ

Aviolation of this inequality certifies the nonclassicality of
the signal light, ρ̂. We can also define a special case of this
generating function,

GzðβÞ ¼ g1;z;z2;…;zKðβÞ: ð4Þ

Similarly to the expression in Eq. (2), Gz is straightfor-
wardly estimated from the measured detector outcomes
cN0;…;NK

ðβÞ by setting zk ¼ zk, and Gz is non-negative for
classical light.

FIG. 1. Protocol overview. A signal state ρ̂ is mixed on a jtj2∶jrj2 beam splitter with a LO jβi in an unbalanced homodyning
configuration. The resulting state ρ̂ðβÞ is fed into a multiplexing scheme (shown for S ¼ 2 steps). Each output beam is measured with a
detector that can produce some outcomes (here, K ¼ f0;…; K ¼ 3g). The resulting statistics cN0;…;NK

ðβÞ is obtained, where Nk counts
the number of outcomes k and N0 þ � � � þ NK ¼ N. From the measured data, we directly estimate our generalized phase-space
distributions, cf., the first line in Eq. (2).
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As an example, we may consider photocounting [25].
Although this model is not required for our approach and
does not apply to our experiment (TESs have a finite
photon-number resolution, a non-unit detection efficiency,
and a nonlinear response function [61]), it demonstrates
howGz generalizes the concept of well-known phase-space
distributions. For photocounting, we find [62,64]

GzðβÞ ¼ h∶e−½1−z�ηn̂∶iρ̂ðβÞ ¼
πð1 − sÞ

2
P

�
r
t
β; s

�
; ð5Þ

with η and n̂ being the efficiency and the photon-number
operator, respectively, and s ¼ 1–2=½ηjtj2ð1 − zÞ� [71].
Thus, GzðβÞ resembles the s-parametrized distributions
Pðrβ=t; sÞ [40,41]. Beyond photoelectric detectors, we
refer to gz0;…;zK and Gz as DAPS distributions as
Eqs. (2) and (4) apply without any knowledge of the
measurement operators fπ̂kgk∈K. In this context, it is worth
emphasizing that the first line in Eq. (2) enables the
estimation of our DAPS distributions as a result of the
measured coincidence statistics cN0;…;NK

ðβÞ alone.
Implementation.—By implementing a single multiplex-

ing step, N ¼ 2S ¼ 2 for S ¼ 1, we demonstrate how to
apply our theoretical framework of DAPS distributions. To
realize our protocol in Fig. 1, we produce heralded photon
states ρ̂ and different LO amplitudes β. The detectors used
for the multiplexing measurement and the heralding are
TESs, which count photons up to a maximal number K. In
the following, we describe the experimental setup [62].
Femtosecond pulses with a 100 kHz repetition rate from

a titanium sapphire laser are coupled into two separate,
periodically poled potassium titanyl phosphate (PPKTP)
wave guides. Both pulses are filtered to a full-width at half-
maximum of �2 nm using angle-tuned bandpass filters.
With the first PPKTP wave guide, prepare the signal ρ̂.
When filtering the pump at 775 nm the wave guide
produces two-mode squeezed vacuum in approximately
a single spatiotemporal mode via type-II parametric down
conversion (PDC) [72]. The signal mode at 1554 nm and
the herald mode at 1547 nm are separated with a polarizing
beam splitter, then filtered and coupled into single-mode
optical fibers. The herald mode is then sent to a single TES
detector. With the second PPKTP wave guide, we prepare
the LO. In contrast to the signal state generation, we filter
the pump at 783 nm and stimulate the PDC process by
seeding it with 2 ns pulses carved with an electro-optic
modulator from a 1580 nm continuous-wave laser. Because
of the strong seed signal, this nonlinear mixing generates
coherent light to an excellent approximation in the polari-
zation mode orthogonal to the seed [73]. We separate the
LO from the seed with a polarizing beam splitter, then pass
through a bandpass filter at 1554 nm. By pumping the two
wave guides at different wavelengths, we are able to create
a LO that is well mode matched to the signal using a seed
laser that is detuned from the heralding mode. This avoids a

potential source of noise due to the seed laser passing
through the filters for the heralding TES. The generated LO
is attenuated to the single-photon level and coupled into
single-mode optical fiber. Crucially, this process prepares a
LO with Poissonian photon statistics with a measured
second-order correlation function gð2Þð0Þ of 1.005� 0.002.
Finally, the LO jβi and signal ρ̂ are combined on a 90∶10

fiber beam splitter. We consider the port that uses jrj2 ¼
10% of the LO and transmits jtj2 ¼ 90% of the signal. The
light from this port, ρ̂ðβÞ, is then impinged on a 50∶50 fiber
beam splitter for realizing a multiplexing step; both outputs
are then sent to two separate TESs. See Fig. 1.
Our experiment uses three TES detectors that can have

efficiencies above η ¼ 90% [74]. TESs are superconduct-
ing photon-number-resolving detectors that we operate in a
dilution refrigerator at a temperature of around 80 mK.
Their response is amplified using an array of superconduct-
ing quantum interference devices [75], followed by further
amplification and filtering at room temperature. This
electrical signal is read by an analogue-to-digital converter
and processed using a matched filter technique [76], which
outputs a single value when triggered by a clock signal
from the laser. We bin these values to assign a photon
number. It should be noted that it is possible to extract
slightly more accurate estimates of photon number, how-
ever, using more sophisticated signal processing tech-
niques, yet without affecting the applicability of the
DAPS distribution approach [61,77].
We record the binned outcome at all three TESs for

various LO amplitudes (jβj2 from 0 to ∼28 in steps of ∼1).
The amplitude is controlled by varying the seed laser
power. To obtain data for a specific heralded state ρ̂, we
consider the subset of trials with the appropriate detection
outcome (i.e., heralding bin kh) at the herald TES.
Verification of nonclassicality.—In a first step, we apply

our DAPS distribution to uncover nonclassical features of
our prepared states through the violation of condition (3).
The optimal negativity we obtain from the DAPS function
[Eq. (2)] is given by the minimum

gmin ¼ min
β

min
z0;…;zK∶

jz0 j2þ���þjzK j2≤1

gz0;…;zK ðβÞ: ð6Þ

To assess the quality of this approach, we compared our
verification of nonclassicality with other methods. In
Ref. [60], we demonstrated that a correlation matrix, M,
obtained from the measured statistics in Eq. (1), is positive
semidefinite for classical light, described through a non-
negative minimal eigenvalue μmin of M. The resulting
notion of submultinomial light, μmin < 0, was shown to
be a better figure of merit than other means of verifying
nonclassicality [61], such as sub-Poisson light [78,79] and
sub-binomial light [80,81].
The comparison of gmin and μmin for our data is shown in

Table I for different heralding bins kh. For the heralded
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one-photon (two-photon) states, we confirm gmin < 0 with
9 (6) standard deviations, while the submultinomial behav-
ior is less significant, 5 (3) standard deviations. For the
vacuum state, i.e., kh ¼ 0, both measures are consistent
with the classical expectation, gmin ¼ 0 ¼ μmin.
Reconstructed distributions.—From the data, we can

directly estimate our DAPS distributions. The results of
our extended analysis are shown in Fig. 2. The estimation
procedure is this: we run the experiment twice, once with
the signal blocked and once with the signal unblocked.
To have a full detector-agnostic approach, we first define

a detector-independent coherent amplitude,

jβðDIÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
N0;…;NK

½0N0 þ � � � þ KNK�cðvacÞN0;…;NK
ðβÞ

s
; ð7Þ

which is given by the statistics cðvacÞN0;…;NK
ðβÞ measured by

blocking the signal [62]. In case of photocounting, this
gives jβðDIÞj ¼ ffiffiffi

η
p jrjjβj. As we do not record a phase, we

consider full phase randomization. This does not affect the
DAPS distributions of our heralded photon states. In Fig. 2,
our DAPS distributions Gz are shown as a function of the
amplitude in Eq. (7), determined by means of the vacuum
measurement.
The same measurement renders it possible to theoreti-

cally predict the DAPS distribution of arbitrary states.

Namely, a general DAPS distribution can be described as a
convolution of the measured vacuum distributionGðvacÞ

z and
the Glauber-Sudarshan distribution Pðβ0; 1Þ of the state
under study [62],

GzðβÞ ¼
Z

d2β0Pðβ0; 1ÞGðvacÞ
z

�
β −

t
r
β0
�
: ð8Þ

In our case, the Gaussian shape of GðvacÞ
z implies that

heralded single-photon (two-photon) states should follow a
Gaussian distribution multiplied with a first-order (second-
order) polynomial in jβðDIÞj2. In Fig. 2, this prediction
(dashed lines) is confirmed as it correctly represents the
DAPS distributions of the measured heralded photon states.
The heralding to kh ¼ 1 gives a characteristic dip at the
origin jβðDIÞj ¼ 0, and the two-photon case, kh ¼ 2, leads
to additional oscillations together with the appearance of a
peak at the origin. We emphasize that the functional
behavior β ↦ GzðβÞ depends on the measurement oper-
ators, but the estimation of GzðβÞ is done without any
specification of the detector operators, according to the first
line in Eq. (2). Moreover, we are able to characterize
defining features of other states without any other prior
knowledge about the detectors from the data obtained using
the vacuum state input [Eq. (8)].
Based on our reconstruction, we were able to determine a

number of other properties of the experimentally produced
states [62]. For instance, we can determine how well the
DAPS distributions enable us to perform a quantum state
discrimination task. The single- and two-photon states
[plots (b) and (c) in Fig. 2] can be distinguished from
each other with more than 98% certainty. Furthermore, we
found that, for z < −2.4, the central dip of Gz becomes
negative, similar to the behavior of other phase-space
quasiprobabilities. The negativity has the highest statistical
significance for z ¼ −4.85, where Gzð0Þ ¼ −0.51� 0.08
is more than 6 standard deviations below the classical
threshold of 0.

TABLE I. For different heralding outcomes, kh, we show that
the nonclassicality criteria μmin < 0 and gmin < 0. gmin is defined
in Eq. (6). μmin is the minimal eigenvalue to the second-order
correlation matrix M defined in Eq. (6) of Ref. [60]; see also SM
[62]. “−0” indicates a slightly negative mean value that rounds to
0.

kh μmin gmin

0 ð−0� 9Þ × 10−4 ð−0� 2Þ × 10−9

1 −0.15� 0.03 −0.026� 0.003
2 −0.10� 0.03 −0.017� 0.003

(a) (b) (c)

FIG. 2. Reconstructed DAPS distributions GzðβÞ [Eq. (4)] as a function of jβðDIÞj [Eq. (7)]. We choose z ¼ −1.5 as it would
correspond to a Wigner function (s ¼ 0) in the case of photocounting under the assumption of almost no loss, η ≈ 90%. From left to
right, (a)–(c), heralded kh ¼ 0, 1, 2-photon states are shown. The dashed lines show the fit to a model inferred from the data obtained by
blocking the signal [Eq. (8)]. The defining structures of the heralded (b) single-photon and (c) two-photon states are the oscillating
patterns near the origin jβðDIÞj ¼ 0.
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Summary and discussion.—We have developed a theory
and realized an experiment to characterize quantum light by
means of phase space that functions for any type of detector
and without performing a prior detector characterization.
Our framework is based on the generating function derived
from the properties of a balanced linear optical network,
enabling our DAPS distribution, to be directly estimated
from measured correlations and that applies to arbitrary
states.
To demonstrate this concept, we showed that a single

multiplexing step is already sufficient for applying our
method. This renders it possible to verify the nonclassi-
cality of multiphoton states based on DAPS distributions,
which results in greater statistical significance than
obtained with earlier approaches [60,61], which themselves
already outperformed previous quantifiers of nonclassical-
ity. Moreover, our approach encompasses prominent phase-
space quasiprobabilities and straightforwardly generalizes
to multimode light.
Our general theory also includes more recent phase-

space functions based on on-off detectors [82], constituting
the special case K ¼ 1 and being applicable to off-the-shelf
detectors (e.g., avalanche photodiodes in Geiger mode and
single-photon nanowire detectors); to prove this, see the
corresponding experiment with S ¼ 1, 2, 3 multiplexing
steps [83]. Furthermore, recent advancements in detector
technology (see, e.g., Refs. [84–87]) offer new photon
counters to which our detector-agnostic framework is also
readily applicable.
With our approach, we are further able to predict

defining phase-space features of any states by measuring
vacuum as a reference. Thus, we can compare a target state
with the actually reconstructed DAPS distribution, thus
enabling us to estimate other quantum properties as well.
As a practical example, a state discrimination task based on
our DAPS distributions resulted in distinguishing one- and
two-photon states with almost unit certainty, despite high
losses in our setup. It is also worth noting that our DAPS
distribution includes the full quantum information of the
state that is accessible with the detectors used and does not
require demanding reconstruction algorithms and detection
models.
Our experiment comprises state-of-the-art detectors

combined with an advantageous method to create coherent
states, well mode matched to our signal. As our method is
detector agnostic, the detector efficiency need not be
specified or even known; the number of data points merely
has to be sufficient to produce statistically meaningful
results. Also, our approach is not restricted to any specific
states; currently, we are mainly limited by the available
sources of nonclassical light.
In the future, recording the LO’s phasewould be beneficial

for applying our scheme to phase-sensitive nonclassical
states as well. Furthermore, generalizing other interferomet-
ric measurement schemes in a detector-agnostic manner is

feasible, e.g., as done for on-off detectors [88]. In addition,
we encounter the imperfections stemming from imbalances
by assigning systematic errors. It may be possible to avoid
this by using more sophisticated strategies [89].
Generalized phase-space distributions are becoming

increasingly important in identifying vastly different
notions of quantumness; see Refs. [49,50] for thorough
overviews. To date, however, such universally applicable
techniques are also highly dependent on the particular
response of the detectors. Our DAPS approach, however,
sets a precedence that such limitations can be overcome in
theory and experiment.
In conclusion, our detector-agnostic framework provides

a universally applicable approach to the robust characteri-
zation of quantum light in phase space under conditions
where detailed knowledge of the measurement apparatus is
not available, and forms a basis for future research.

The authors are grateful to William R. Clements for
helpful discussions and Jelmer J. Renema for his assistance
with the installation of the cryogenic infrastructure. The
authors also thank Scott Glancy, Arik Avagyan, and Tim
Bartley for valuable comments. The Integrated Quantum
Optics group acknowledges financial support from the
Gottfried Wilhelm Leibniz-Preis (Grant No. SI1115/3-1).
This work received funding through the Networked
Quantum Information Technologies (NQIT) hub (part of
the UK National Quantum Technologies Programme)
under Grant No. EP/N509711/1. G. S. T. acknowledges
financial support from the Natural Sciences and
Engineering Research Council of Canada and the Oxford
Basil Reeve Graduate Scholarship. A. E. is supported by
EPSRC (Grant No. EP/K034480/1 BLOQS). T. A.W.W. is
supported by Fondation Wiener—Anspach. J. L. acknowl-
edges the European Commission (H2020-FETPROACT-
2014 Grant No. QUCHIP). I. A.W. acknowledges ERC
(Grant No. MOQUACINO). This work was supported by
the Quantum Information Science Initiative (QISI).

*jan.sperling@uni-paderborn.de
[1] M. Krenn, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger,

Quantum communication with photons, in Optics in Our
Time (Springer, Cham, 2016), pp. 455–482.

[2] J. L. O’Brien, A. Furusawa, and J. Vučković, Photonic
quantum technologies, Nat. Photonics 3, 687 (2009).

[3] T. C. Ralph and P. K. Lam, A bright future for quantum
communications, Nat. Photonics 3, 671 (2009).

[4] D. F. Walls, Squeezed states of light, Nature (London) 306,
141 (1983).

[5] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani,
Measurement of the Wigner Distribution and the Density
Matrix of a Light Mode Using Optical Homodyne Tomog-
raphy: Application to Squeezed States and the Vacuum,
Phys. Rev. Lett. 70, 1244 (1993).

PHYSICAL REVIEW LETTERS 124, 013605 (2020)

013605-5

https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.222
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1103/PhysRevLett.70.1244


[6] G. Breitenbach, S. Schiller, and J. Mlynek, Measurement of
the quantum states of squeezed light, Nature (London) 387,
471 (1997).

[7] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,
and S. Schiller, Quantum State Reconstruction of the Single-
Photon Fock State, Phys. Rev. Lett. 87, 050402 (2001).

[8] G. Harder, C. Silberhorn, J. Rehacek, Z. Hradil, L. Motka,
B. Stoklasa, and L. L. Sánchez-Soto, Local Sampling of the
Wigner Function at Telecom Wavelength with Loss-Toler-
ant Detection of Photon Statistics, Phys. Rev. Lett. 116,
133601 (2016).

[9] T. Kiesel, W. Vogel, V. Parigi, A. Zavatta, and M. Bellini,
Experimental determination of a nonclassical Glauber-
Sudarshan P function, Phys. Rev. A 78, 021804(R) (2008).

[10] K. Laiho, K. N. Cassemiro, D. Gross, and C. Silberhorn,
Probing the Negative Wigner Function of a Pulsed Single
Photon Point by Point, Phys. Rev. Lett. 105, 253603 (2010).

[11] T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S.
Ducci, A. Keller, T. Coudreau, and P. Milman, Direct
measurement of the biphoton Wigner function through
two-photon interference, Sci. Rep. 3, 3530 (2013).

[12] C. Baune, J. Fiurášek, and R. Schnabel, Negative Wigner
function at telecommunication wavelength from homodyne
detection, Phys. Rev. A 95, 061802(R) (2017).

[13] D.-G. Welsch, W. Vogel, and T. Opatrný, Homodyne
detection and quantum-state reconstruction, Prog. Opt.
39, 63 (1999).

[14] C. Silberhorn, Detecting quantum light, Contemp. Phys. 48,
143 (2007).

[15] A. I. Lvovsky and M. G. Raymer, Continuous-variable
optical quantum-state tomography, Rev. Mod. Phys. 81,
299 (2009).

[16] S. M. Tan, An inverse problem approach to optical homo-
dyne tomography, J. Mod. Opt. 44, 2233 (1997).

[17] V. N. Starkov, A. A. Semenov, and H. V. Gomonay, Numeri-
cal reconstruction of photon-number statistics from photo-
counting statistics: Regularization of an ill-posed problem,
Phys. Rev. A 80, 013813 (2009).

[18] T. Richter, Pattern functions used in tomographic
reconstruction of photon statistics revisited, Phys. Lett. A
211, 327 (1996).

[19] U. Leonhard, M. Munroe, T. Kiss, T. Richter, and M. G.
Raymer, Sampling of photon statistics and density matrix
using homodyne detection, Opt. Commun. 127, 144 (1996).

[20] Z. Hradil, Quantum-state estimation, Phys. Rev. A 55,
R1561(R) (1997).

[21] A. I. Lvovsky, Iterative maximum-likelihood reconstruction
in quantum homodyne tomography, J. Opt. B 6, S556
(2004).

[22] R. Kosut, I. A. Walmsley, and H. Rabitz, Optimal experi-
ment design for quantum state and process tomography and
Hamiltonian parameter estimation, arXiv:quant-ph/
0411093.

[23] J. Řeháček, D. Mogilevtsev, and Z. Hradil, Operational
Tomography: Fitting of Data Patterns, Phys. Rev. Lett. 105,
010402 (2010).

[24] D. Mogilevtsev, A. Ignatenko, A. Maloshtan, B. Stoklasa, J.
Rehacek, and Z. Hradil, Data pattern tomography:
Reconstruction with an unknown apparatus, New J. Phys.
15, 025038 (2013).

[25] P. L. Kelley and W. H. Kleiner, Theory of electromagnetic
field measurement and photoelectron counting, Phys. Rev.
136, A316 (1964).

[26] M. Fleischhauer and D. G. Welsch, Nonperturbative ap-
proach to multimode photodetection, Phys. Rev. A 44, 747
(1991).

[27] A. K. Jaiswal andG. S. Agarwal, Photoelectric detectionwith
two-photon absorption, J. Opt. Soc. Am. 59, 1446 (1969).

[28] M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, Non-
linearity in single photon detection: Modeling and quantum
tomography, Opt. Express 19, 21305 (2011).

[29] S. V. Polyakov and A. L. Migdall, High accuracy verifica-
tion of a correlated-photon-based method for determining
photon-counting detection efficiency, Opt. Express 15, 1390
(2007).

[30] A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen,
P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and
I. A. Walmsley, Absolute efficiency estimation of photon-
number-resolving detectors using twin beams, Opt. Express
17, 4397 (2009).

[31] D. N. Klyshko, Use of two-photon light for absolute
calibration of photoelectric detectors, Sov. J. Quantum
Electron. 10, 1112 (1980).

[32] A. Luis and L. L. Sánchez-Soto, Complete Characterization
of Arbitrary Quantum Measurement Processes, Phys. Rev.
Lett. 83, 3573 (1999).

[33] J. Fiurášek, Maximum-likelihood estimation of quantum
measurement, Phys. Rev. A 64, 024102 (2001).

[34] G. M. D’Ariano, L. Maccone, and P. Lo Presti, Quantum
Calibration of Measurement Instrumentation, Phys. Rev.
Lett. 93, 250407 (2004).

[35] A. Feito, J. S. Lundeen, H. Coldenstrodt-Ronge, J. Eisert,
M. B. Plenio, and I. A. Walmsley, Measuring measurement:
Theory and practice, New J. Phys. 11, 093038 (2009).

[36] H. B. Coldenstrodt-Ronge, J. S. Lundeen, K. L. Pregnell, A.
Feito, B. J. Smith, W. Mauerer, C. Silberhorn, J. Eisert,
M. B. Plenio, and I. A. Walmsley, A proposed testbed for
detector tomography, J. Mod. Opt. 56, 432 (2009).

[37] J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R.
Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter,
Modified detector tomography technique applied to a
superconducting multiphoton nanodetector, Opt. Express
20, 2806 (2012).
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