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We consider the dispersion interaction between two ground-state hydrogen atoms, interacting with the
quantum electromagnetic field in the vacuum state, in the presence of an external static electric field, both in
the nonretarded and in the retarded Casimir-Polder regime. We show that the presence of the external field
strongly modifies the dispersion interaction between the atoms, changing its space dependence. Moreover,
we find that, for specific geometrical configurations of the two atoms with respect to the external field and/
or the relative orientation of the fields acting on the two atoms, it is possible to change the character of the
dispersion force, turning it from attractive to repulsive, or even make it vanishing. This new finding clearly
shows the possibility to control and tailor interatomic dispersion interactions through external actions. By a
numerical estimate of the field-modified interaction, we show that at typical interatomic distances the
change of the interaction’s strength can match or even outmatch the unperturbed interaction; this can be
obtained for values of the external field that can be currently achieved in the laboratory, and sufficiently
weak to be taken into account perturbatively.
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Introduction.—Radiation-mediated interactions, such as
Casimir-Polder and van der Waals forces, are long-range
interactions between atoms, molecules, or macroscopic
bodies, related to the zero-point fluctuations of the quantum
electromagnetic field [1–11]. These ubiquitous interactions
have great relevance in many areas of physics, and
applications in biology [12,13], chemistry [14], and nano-
technologies [15–17]. A striking property is the possibility
to control and tailor them through the external environment,
for example through cavities or walls [18–22], waveguides
[23–27], or photonic crystals [28,29]. Of special interest is
to investigate the possibility of making Casimir interactions
repulsive, in particular for applications in nano- and
microelectromechanical systems (NEMS and MEMS),
for which Casimir interactions between their various parts,
at submicrometrical separation, can be relevant [15]; a
repulsive Casimir interaction could help to prevent stiction
and consequent failure of these devices [30,31].
In recent years, the possibility of manipulating van der

Waals interactions through external optical fields has been
investigated [32–34]; it was shown that a near-resonant
electromagnetic field can enhance the intensity of the atom-
surface Casimir-Polder force [35], and that, in the presence
of an external quantum field, the Casimir-Polder interaction
between a ground-state atom and a nondispersive surface
has features similar to the Casimir-Polder potential for
excited atoms [36], leading to the possibility of a repulsive
force [37]. Furthermore, by inducing an atomic rotating
dipole by polarized light, the possibility of a lateral or
repulsive force has been predicted [38]. The effect of a
static electric field on the dipole-dipole near-zone van der

Waals interaction in ultracold Rydberg gases has been
recently studied [39,40].
In this Letter we consider a different situation, that is, the

dispersion interaction between two ground-state hydrogen
atoms, in both the nonretarded and the retarded (Casimir-
Polder) regime, subjected to an external static electric field.
Due to the presence of this field, the atoms acquire spatially
correlated dipole moments; we find that this strongly
affects the atom-atom dispersion interaction, modifying
its distance dependence, even for a low intensity of the
external field that can be easily obtained in the laboratory,
and such that can be treated perturbatively. In the geomet-
rical configurations, which we consider in detail, we show
that the distance dependence of the dispersion interaction
changes, decreasing slower with the distance (as r−3 and
r−4 in the near and far zone, respectively, compared to r−6

and r−7 for unperturbed atoms). Also, we find that we can
modify the magnitude of the dispersion interaction, its
attractive or repulsive character, through the external field,
or causing it to vanish, exploiting a field strength achiev-
able in current experimental setups. A clear physical
interpretation of these findings is discussed, as well as a
numerical estimate of the effect, and its observability and
relevance. These results can be relevant for a direct meas-
urement of dispersion interactions between atoms [41,42].
The field-modified dispersion interaction.—We consider

two hydrogen atoms, A and B, interacting with the quantum
electromagnetic field in the vacuum state, subjected to the
external static and uniform (over the atomic dimensions)
classical electric fields E and E0, respectively. We assume
that atom A is at r ¼ 0, and r is the separation vector
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between the two atoms. The unperturbed ground state is
jϕA

100;ϕ
B
100ij0kλi, where jϕnlmi is an atomic state with

quantum numbers n, l, m, and j0kλi is the electromagnetic
vacuum state. This state is corrected by both the external
electric field and the quantum radiation field.
The Hamiltonian of our system is

H ¼ H0 þ VA þ VB þHA
I þHB

I ; ð1Þ

where H0 ¼ HA þHB þHF is the unperturbed
Hamiltonian, the sum of the atomic and the field

Hamiltonians; VAðBÞ and HAðBÞ
I are, respectively, the inter-

action Hamiltonian of atom AðBÞ with the external field
and the radiation field. In the multipolar coupling scheme
and within the dipole approximation, they are

VA ¼ −μA · E; VB ¼ −μB · E0; ð2Þ

HA
I ¼ −

1

ϵ0
μA ·D⊥ð0Þ; HB

I ¼ −
1

ϵ0
μB · D⊥ðrÞ; ð3Þ

where μAðBÞ is the dipole moment operator of atom AðBÞ,
proportional to the electric charge q, and

D⊥ðrÞ ¼ i
X
kλ

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏckϵ0
2V

r
êkλðakλeik·r − a†kλe

−ik·rÞ ð4Þ

is the transverse displacement field operator [2,4]. In (4),V is
the quantizationvolume, ϵ0 is the vacuumdielectric constant,
êkλ are real polarization unit vectors (λ ¼ 1, 2), and akλ, a

†
kλ

are annihilation and creation operators satisfying bosonic
commutation rules.
In the absence of the external field, the dispersion

interaction between the two atoms is at fourth order in
the coupling with the radiation field [1–4]: vacuum
fluctuations induce and correlate dipole moments in the
atoms (this accounts for two orders in the atom-field
coupling), and, afterwards, the correlated dipoles yield
an interaction energy (two more orders in the coupling
constant) [4,43]. This is equivalent to the exchange of a pair
of virtual photons. In the present case, for the dispersion
interaction component related to the external field: (i) the
external fields polarize and correlate the atoms, which
causes them to acquire a permanent dipole moment (first
order in the coupling with the external field, for each atom);
(ii) these dipoles interact through the transverse field (one
virtual-photon exchange, thus a second-order process in the
coupling with the transverse field). Although the complete
interaction energy is proportional to q4, a factor q2 is
related to the interaction with the external fields, and
proportional to their intensity, and another factor q2 is
related to the interaction with the transverse field. The
interatomic potential involves the exchange of just one
virtual photon, similarly to the atom-wall Casimir-Polder

interaction [1,44] or the entangled-atoms resonance inter-
action [2,28].
We first obtain the ground state corrected up to second

order in the external field; then, in order to obtain the
dispersion interaction, we evaluate the distance-dependent
part of the second-order energy shift due to the interaction
with the transverse field. For simplicity, we assume E and
E0 along the z axis (positive or negative), and include only
contributions from n ¼ 2 atomic intermediate states (inclu-
sion of higher n atomic states does not change the
qualitative features of our results). The second-order
ground state, eigenstate of H0 þ VA þ VB, in the presence
of the static fields, is

jψi ¼
�
½1 − γ2ðE2 þ E02Þ�jϕA

100;ϕ
B
100i

−
ffiffiffi
2

p
γðEjϕA

210;ϕ
B
100i þ E0jϕA

100;ϕ
B
210iÞ

þ γ2
�
2EE0jϕA

210;ϕ
B
210i −

1ffiffiffi
2

p
�
3

2

�
6

× ðE2jϕA
200;ϕ

B
100i þ E02jϕA

100;ϕ
B
200iÞ

��
j0kλi; ð5Þ

where γ ¼ 29qa0=ð36E1Þ, E1 and E2 ¼ E1=4 are, respec-
tively, the unperturbed energies of the ground and the first
excited level of the hydrogen atom, and a0 the Bohr radius.
The second-order energy correction of the state (5), due

to the interaction (3) with the radiation field, is

ΔE ¼
X
I

hψ jðHA
I þHB

I ÞjIihIjðHA
I þHB

I Þjψi
Eψ − EI

; ð6Þ

where Eψ is the energy of the state (5), including the Stark
shift, and jIi are the other eigenstates of H0 þ VA þ VB,
with energy EI, obtained by degenerate-state perturbation
theory (the n ¼ 2 level has a fourfold degeneracy).
We need to evaluate only the part of the shift (6) that

depends on the interatomic distance (self-energies do not
contribute to the interaction energy [2]), and thus only terms
containing both HA

I and HB
I are relevant; this introduces a

factor proportional to q2, due to the atomic dipole moments
in (3). We now determine which intermediate states jIi ¼
jĨijnkλi contribute to the field-modified fourth-order energy
shift. The field part of these intermediate states consists of
one-photon states j1kλi, while the atomic part consists of the
eigenstates jĨi ofHA þHB þ VA þ VB, which are obtained
by degenerate-state perturbation theory, and written in the
form jĨi ¼ jĨ0i þ jĨ1i þ jĨ2i, where the subscript 0,1,2
indicates the perturbative order in VA þ VB. The zeroth-
order terms are

jĨ�;�
0 i ¼ 1

2
ðjϕA

210i � jϕA
200iÞðjϕB

210i � jϕB
200iÞ: ð7Þ
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The four intermediate states (7) have the same unperturbed
energy, and give a nonvanishing matrix element in (6) due to
the terms linear in E and E0 in (5); for the r-dependent
contributions, we haveX
m;n¼þ;−

hψ jHA
I jĨmn

0 1kλihĨmn
0 1kλjHB

I jψi þ ðA ↔ BÞ

¼ 8γ2EE0 ℏck
2Vϵ0

ðêkλ · μgeB Þðêkλ · μegA Þeik·r; ð8Þ

whereμegAðBÞ ¼ hϕ210jμAðBÞjϕ100i ¼ 215=23−5qa0ẑ is oriented

along z. The energy denominator in (6), relative to inter-
mediate states (7), is2ðE2 − E1Þ þ ℏck ¼ 3jE1j=2þ ℏck ¼
ℏcðk0 þ kÞ, where k0 ¼ 2jE2 − E1j=ℏc. Terms from first-
and second-order intermediate states, jĨ1i and jĨ2i, only yield
higher-order contributions to the energy shift, and can be
neglected. Also, because the numerator in (6) is at fourth
order in q, the Stark energy shifts in Eψ and EI can be
neglected. Using (8) in (6), finally yields, for the field-
assisted distance-dependent energy shift,

ΔEðrÞ ¼ −
4γ2EE0

Vϵ0

X
kλ

ðêkλ · μgeB Þðêkλ · μegA Þ keik·r

kþ k0
: ð9Þ

After performing the polarization sum,
P

λðêkλÞiðêkλÞj ¼
δij − k̂ik̂j, taking the continuum limit,

P
k → V=ð2πÞ3R

dkk2
R
dΩ, and performing algebraic calculations involv-

ing angular and frequency integrations, Eq. (9) gives

ΔEðrÞ ¼ −
2γ2

π2ϵ0
EE0ðμegA ÞiðμgeB Þj

× ð−∇2δij þ∇i∇jÞ
1

r
fðk0rÞ; ð10Þ

where the Einstein convention of repeated indices has been
used, the differential operators act on the variable r, and we
introduce the auxiliary functions

fðxÞ ¼ CiðxÞ sinðxÞ þ
�
π

2
− SiðxÞ

�
cosðxÞ; ð11Þ

gðxÞ ¼ −CiðxÞ cosðxÞ þ
�
π

2
− SiðxÞ

�
sinðxÞ; ð12Þ

with SiðxÞ and CiðxÞ being the sine and cosine integral
functions [45].
Expression (10) is valid for a generic geometrical

configuration of the atoms with respect to the external
fields. It should be added to the usual unperturbed
dispersion interaction for ground-state atoms [ΔEvdWðrÞ,
given by our ulterior Eq. (18)]. It is a second-order quantity
in the coupling with the radiation field, involving one
virtual photon exchange; it also contains a second-order
coupling with the external fields. It is thus an overall fourth-
order quantity in q (each dipole moment μ brings one

power of q). It is proportional to E and E0, allowing an
external control of its intensity and sign.
We now focus on two relevant geometrical configura-

tions: atoms aligned in a direction perpendicular or parallel
to the direction of the external field.
For atoms aligned perpendicularly to the external field,

Eq. (10) yields

ΔE⊥ðrÞ ¼
βEE0

r

�
fðk0rÞ

�
1

ðk0rÞ2
− 1

�
þ gðk0rÞ

k0r
þ 1

k0r

�
;

ð13Þ

where we have defined

β ¼ 2γ2k20μ
eg
A μgeB

π2ϵ0
¼ 1

4πϵ0

234q4a40
320πℏ2c2

¼ 9k20
4π2ϵ0

α2; ð14Þ

where E1 ¼ −ℏ2=ð2ma20Þ, α ¼ 2μ2=½3ðE2 − E1Þ� is the
static polarizability of the atoms, and μeg, k0 have been
defined before.
Using the asymptotic expansions of the auxiliary func-

tions fðxÞ and gðxÞ [45], this expression can be approxi-
mated in the near (k0r ≪ 1) and far (k0r ≫ 1) zone,
yielding

ΔE⊥ðrÞ ≃ βEE0 1
k20

×

� π
2r3 for k0r ≪ 1

4
k0r4

for k0r ≫ 1:
ð15Þ

Similarly, for atoms aligned in the same direction of the
external fields,

ΔEkðrÞ ¼ −2βEE0 1
r

�
fðk0rÞ
ðk0rÞ2

þ gðk0rÞ
k0r

�
; ð16Þ

and the near- and far-zone approximations yield

ΔEkðrÞ ≃ −βEE0 1
k20

×
� π

r3 for k0r ≪ 1

4
k0r4

for k0r ≫ 1:
ð17Þ

Both (15) and (17) show that the field-assisted compo-
nent of the dispersion interaction decreases as r−3 in the
near zone, and as r−4 in the far zone. The field-assisted
component can now be compared with the unperturbed
dispersion energy between ground-state atoms, given by
[2,6,44,46]

ΔEvdWðrÞ ≃
(− 3

64π2ϵ2
0

Ēα2 1
r6

for k0r ≪ 1;

− 23ℏc
64π3ϵ2

0

α2 1
r7 for k0r ≫ 1;

ð18Þ

where Ē is an average atomic excitation energy, defined as
Ē ¼ EAEB=ðEA þ EBÞ, EA and EB being the most relevant
excitation energy of atoms A and B (from the ground to the
first excited level), and α their static polarizability. When
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the external field is present, the complete fourth-order
interaction energy is ΔEvdWðrÞ þ ΔE⊥ðkÞðrÞ.
The field-dependent component of the dispersion inter-

action scales with the distance quite slower than the
unperturbed interaction; indeed, its scaling is the same
as that of the attractive atom-wall Casimir-Polder inter-
action, r−3 in the near zone, and r−4 in the far zone, as a
comparison with the expressions in the Casimir-Polder
original paper shows [1]. Its sign, determining its attractive
or repulsive character, can however be different, depending
on the geometric configuration and the relative orientation
of the external electric fields.
Figure 1 shows, for E ¼ E0, the two configurations

considered, perpendicular and parallel. The arrows on the
atoms indicate the direction of the induced dipole moments.
Our results (13), (15), (16), and (17) show that,whenE andE0
are parallel, the change in the dispersion interaction energy
due to the external field is positive in the perpendicular
configuration (yielding a repulsive contribution), while it is
negative in the parallel configuration (attractive contribu-
tion). This can be understood by a transparent physical
picture in terms of the interaction between the induced dipole
moments: in the perpendicular case [Fig. 1(a)] the dipole-
dipole interaction gives a repulsive force (the interaction
energy of one induced dipole in the field generated by
the other dipole, is positive), whereas in the parallel case
[Fig. 1(b)] it yields an attractive force (the interaction energy
is negative). The situation is reversed if the electric fields on
the two atoms have opposite directions, because in this caseE
and E0 have an opposite sign, and the induced dipoles are
opposite. On the other hand, the unperturbed interaction (18)
between ground-state atoms is always attractive. Thus our
findings show that, exploiting external static electric fields,
we can modify the atomic dispersion interaction, and even
turn it from attractive to repulsive for sufficiently intense
external electric fields.
A similar physical picture holds for the (ground-state)

atom-plate Casimir-Polder interaction, in terms of the inter-
action between the instantaneous atomic dipole and its
image beyond the plate, that are correlated: the components
parallel to the surface point in opposite directions, while the

perpendicular component points to the samedirection. For an
isotropic atom, this eventually yields the attractive atom-
plateCasimir-Polder potential, due to exchange of onevirtual
photon, and behaving as r−3 (near zone) and r−4 (far zone)
[47,48]. There is some analogy also with the resonance
interaction between two entangled atoms, one excited and the
other in the ground state [4,28,49], where the unperturbed
atomic dipole moments are correlated too, and a one-photon
exchange is involved. The resonance interaction has however
a different scaling with the distance, due to the possibility of
a real photon exchange.
We now compare numerically the field-dependent con-

tribution which we have obtained with the unperturbed
dispersion interaction, when the interatomic distance is
r ¼ 10−6m. Since k0 ≃ 1.03 × 108m−1, we have k0r ≫ 1
(far zone). From (15) and (17), we obtain

ΔE⊥ ¼ −ΔEk ≃ 1.7 × 10−36EE0 eV=ðV=mÞ2: ð19Þ

At the same distance, the unperturbed dispersion energy
(18) is

ΔEvdW ≃ −7.8 × 10−27 eV ð20Þ

[for consistency, in the evaluation of (20), we have included
only contributions to the polarizability from n ¼ 2 states].
A comparison of (19) with (20) shows that, at the

distance considered, jΔE⊥j and jΔEkj become comparable
with jΔEvdWj for a field strength of the order of E ¼
E0 ≃ 105 V=m. Such an intensity is well within the reach of
static fields currently obtained in the laboratory [50–52],
and within, even by several orders of magnitude, the
strength limit imposed by our perturbative treatment of
the external field (Stark shifts much smaller than atomic
transition energies). With the same strength of the electric
field, and at larger interatomic distances, the field-modified
interaction can exceed the unperturbed interaction energy
by several orders of magnitude. All this indicates a realistic
possibility to observe the new effects which we have
calculated. At shorter distances, our results (13), (15),
(16), and (17) show that higher field intensities are required
for making the field-mediated contribution comparable to
the unperturbed one: ∼106 V=m for r ∼ 100 nm, and
∼108 V=m for r ∼ 10 nm (both in the near zone).
Submicrometrical distances, as those which we are consid-
ering, are a typical distance between the parts of MEMS and
NEMS, where Casimir dispersion interactions become
relevant [15]. In the configurations yielding a repulsive
field-assisted component of the dispersion force, the external
fields and the interatomic distance can be appropriately
calibrated to make the total dispersion interatomic force
vanish (this equilibrium distance, however, is an unstable
point). As mentioned, all this can also have relevance in
applications where Casimir forces are important [15,31].

(b)(a)

FIG. 1. Two hydrogen atoms in free space in the presence of an
external static electric field E along the z direction: (a) atoms
aligned perpendicularly to the direction of the external field;
(b) atoms aligned in the same direction of the external field. The
red arrows indicate the direction of the induced dipole moments.
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We now compare our results with previous ones for
dispersion interactions in the presence of a radiation field,
in particular Ref. [32], where the interaction between two
nonpolar molecules in the presence of an external electro-
magnetic field in a Fock state is considered. Notwithstanding
some analogy, this case is fundamentally different from ours,
because a photon in a Fock state, contrarily to a static field,
does not induce a permanent dipole moment in the atoms
(the average value of the electric field in a Fock state is zero);
thus, our results cannot be obtained from those in [32] even in
the zero-frequency limit. This is confirmed by the different
distance scaling of the interaction energy, in the retarded
Casimir-Polder regime: r−2 or r−3 with space oscillations
(similarly to the case of excited atoms) in [32], depending on
the polarization of the photon, whereas in our case we find a
r−4monotonic behavior, allowingus to reverse the sign of the
dispersion force over a large portion of space. Also, the
physical origin of the change of the distance scaling is very
different in the two cases: possibility of atomic excitation by
absorption of the external photon in [32], and permanent
correlated dipole moments in the ground-state atoms,
induced by the static field, in our case. Our results are also
coherent with the experimental and theoretical results
reported in [39], where the near-zone van der Waals inter-
action between Rydberg atoms in S states under the action of
an electric field is considered, using a phenomenological
model where a r−3 electrostatic dipole-dipole interaction
between the atoms is added, obtaining good agreement
between theoretical predictions and experiments (they con-
sider only the near zone); a similar near-zonemodel was used
in [40]. The effect of an electric field on the van der Waals
dipole of a molecule pair [53] has been also considered.
Conclusions.—In this Letter we have considered the

dispersion interaction (van der Waals and Casimir-Polder)
between two ground-state hydrogen atoms subjected to an
external static electric field, and shown that the external
field can be exploited to strongly modify the intensity,
distance dependence, and character (attractive or repulsive)
of the dispersion force. We have estimated, at typical
distances and for field intensities such that can be treated
by perturbation theory, the value of the field-modified
component of the interaction in relevant configurations, and
compared it with the dispersion interaction for unperturbed
atoms. Our new findings show that, with a strength of the
external field currently attainable in the laboratory, the
force can be strikingly tailored exploiting the external field,
with the possibility of obtaining a significant increase or
decrease, or reversing it from attractive to repulsive. A
significant enhancement of the force could be of striking
importance for a direct detection of such interactions, in
particular in the retarded Casimir-Polder regime [41,42].
As shown by Eqs. (15) and (17), a repulsive dispersion
interaction can be achieved, with appropriate field
strengths, when the electric fields are parallel to each other
and the atoms are aligned in a direction perpendicular to

the external field, or when the external electric fields are
antiparallel to each other and the atoms are aligned parallel
to the external fields. Our work has been concerned with
ground-state atoms; a possible future extension will con-
sider excited atoms, where the exchanged photon can be
real, for which there has been a renewed interest in recent
literature [54–57].
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[52] R. González-Férez and P. Schmelcher, Impact of electric
fields on highly excited rovibrational states of polar dimers,
New J. Phys. 11, 055013 (2009).

[53] K. L. C. Hunt and J. E. Bohr, Effects of van der Waals
interactions on molecular dipole moments: The role of field
induced fluctuation correlations, J. Chem. Phys. 83, 5198
(1985).

[54] M. Donaire, R. Guérout, and A. Lambrecht, Quasiresonant
van der Waals Interaction Between Nonidentical Atoms,
Phys. Rev. Lett. 115, 033201 (2015).

[55] P. W. Milonni and S. M. H. Rafsanjani, Distance depend-
ence of two-atom dipole interactions with one atom in an
excited state, Phys. Rev. A 92, 062711 (2015).

[56] P. Barcellona, R. Passante, L. Rizzuto, and S. Y. Buhmann,
van der Waals interactions between excited atoms in generic
environments, Phys. Rev. A 94, 012705 (2016).

[57] U. D. Jentschura, C. M. Adhikari, and V. Debierre, Virtual
Resonant Emission and Oscillatory Long-Range Tails in van
der Waals Interactions of Excited States: QED Treatment
and Applications, Phys. Rev. Lett. 118, 123001 (2017).

PHYSICAL REVIEW LETTERS 124, 013604 (2020)

013604-7

https://doi.org/10.1088/1367-2630/11/5/055013
https://doi.org/10.1063/1.449732
https://doi.org/10.1063/1.449732
https://doi.org/10.1103/PhysRevLett.115.033201
https://doi.org/10.1103/PhysRevA.92.062711
https://doi.org/10.1103/PhysRevA.94.012705
https://doi.org/10.1103/PhysRevLett.118.123001

