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Unlike well-established parameter estimation, function estimation faces conceptual and mathematical
difficulties despite its enormous potential utility. We establish the fundamental error bounds on function
estimation in quantum metrology for a spatially varying phase operator, where various degrees of smooth
functions are considered. The error bounds are identified in the cases of the absence and the presence of
interparticle entanglement, which correspond to the standard quantum limit and the Heisenberg limit,
respectively. Notably, these error bounds can be reached by either position-localized states or wave-
number-localized ones. In fact, we show that these error bounds are theoretically optimal for any type of
probe states, indicating that quantum metrology on functions is also subject to the Nyquist-Shannon
sampling theorem, even if classical detection is replaced by quantum measurement.
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Accurate estimation of signals with a limited amount of
resources is a fundamental problem in physics. Quantum
metrology has made a profound contribution to this
problem by demonstrating a classically unattainable scaling
of the estimation error [1–5]. This nonclassical accuracy,
called the Heisenberg limit, can be achieved by various
forms of quantum features including entanglement [2],
quantum circuit [4], bosonic [6,7] and spin [8,9] squeezing,
and quantum statistics [10]. Applications of the Heisenberg-
limited measurement ranges from detection of fundamental
signals such as atomic clocks [11,12] and gravitational
waves [13,14] to experimental verification of nonclassical
states such as scalable cat states [15] and polariton con-
densates [16,17].
The Heisenberg limit significantly surpasses the standard

quantum limit (SQL) δ ¼ OðN−1=2Þ, which sets the accu-
racy bound arising from uncorrelated noises, whereN is the
size of the resource. While the Heisenberg limit δ ¼
OðN−1Þ and the SQL δ ¼ OðN−1=2Þ apply to both scalar
estimation and vector estimation [18–23], it is generally
considered that the continuous nature of the signal may
alter the scaling law. Such a problem can be categorized as
function estimation, which has attracted growing attention.
For example, atomic clocks [24,25] and gravitational waves
[14,26] involve time-varying signals, which offer richer
information when treated as functions. More generally,
exploration for new phenomena involves observing struc-
tures in a continuous space and/or time, which can be
represented as functions. This indicates that functional
structures play crucial roles in generic continuous systems
including measurements on magnetometry [27,28], nano-
structured materials [29–32], live cells [33,34], and event
horizons [35,36]. Thus, it is not only a fundamental

question but also relevant to a wide range of applications
to ask how quantum metrology can contribute to the
detection of functions with ultimate accuracy.
The quantum version of function estimation has been

investigated in terms of the signal detection theory in
Refs. [25,37–41]. In fact, weaker scaling laws are implied
when the target parameter can change continuously in time,
such as a Gaussian signal. The demonstration of such
unconventional limits has recently come within experimen-
tal reach due to the realization of, e.g., high-N00N states
[42] and optical phase tracking [43]. Although the detection
theory is applicable to stochastic noises, it does not support
the case where the relevant parameter is not inherently
stochastic, which is often the case with quantum imaging
and quantum signal processing [24,31,44,45].
In this Letter, we present a fundamental framework of

quantum metrology on functions. Unlike parametric esti-
mation, function estimation involves infinite degrees of
freedom and inevitably requires further assumptions on
the target function. Assuming only the smoothness of
the function, we find the SQL of OðN−q=ð2qþ1ÞÞ and the
Heisenberg limit of OðN−q=ðqþ1ÞÞ, where q is a measure of
the degree of smoothness of the function. Our framework
allows analysis of estimation errors of data series under
given smoothness, such as a bound on the amplitude of
derivatives. This includes the previous results on Gaussian
processes through computation of their smoothness [46], as
demonstrated later. The data series requires neither to have
a prior distribution nor even to be continuous, allowing, for
example, a sample with a finite number of discontinuous
points [31,32]. Moreover, we have found that the error
bound can equally be saturated by states which are
localized in position or wave number. This implies the
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equivalence between space discretization and mome-
ntum cutoff in quantum information processing, reminis-
cent of the Nyquist-Shannon sampling theorem in classical
statistics.
Setup.—We consider the estimation of an unknown

function φðxÞ defined over an interval 0 ≤ x ≤ L by using
the position-dependent phase-shift gate Ûφ shown in Fig. 1.
For simplicity, we assume the periodic boundary condition.
To estimate φ, we prepare an N-particle state as a probe,

which evolves according to the unitary operator Ûφ and
then is measured. These particles are distributed over the
interval [0; L] and have two internal states: one state jþi
interacts with the phase-shift gate Ûφ and the other state j−i
does not.
We work in the first-quantization formalism and denote

by jx;�i the position eigenstate at x with internal state �.
Let the phase-shift gate act as Ûφjx;þi ¼ eiφðxÞjx;þi and
Ûφjx;−i ¼ jx;−i. The unknown function φ can be esti-
mated from measurement on this output. When the probe is
composed of N separable particles, the error of the function
estimation is bounded by the SQL. A probe with appro-
priately entangled N particles, on the other hand, leads to
the Heisenberg limit.
We recall that the estimation error of a scalar parameter θ

is computed as δ2 ¼ E½jθ̃ − θj2�, where θ̃ is the estimator
depending on the stochastic nature of measurement out-
comes. Similarly, we consider a stochastic estimator φ̃ for
the function, and compute the mean-square periodic error
(MSPE) [47] as

δ2 ¼ E

�Z
L

0

dx
L

½φ̃ðxÞ − φðxÞ�22π
�
: ð1Þ

In other words, the estimation error is averaged
over x and the modulus is replaced by ½φ̃ðxÞ − φðxÞ�2π ≔
minn∈Zjφ̃ðxÞ − φðxÞ þ 2πnj, i.e., the minimal absolute
value modulo 2π.
The main difficulty in function estimation lies in the

fact that the problem involves infinite degrees of freedom.

In particular, the lower bound on δ2 cannot be established
for an arbitrary function, since we cannot exclude any
rapidly fluctuating functions from a finite number of
measurements. Hence, we impose the following constraint
on the target function φ:

Z
L

0

dx
L

jφ0ðxÞj2 ≤ M2

L2
ð2Þ

for some positive number M > 0. With this constraint, we
can establish a suitable lower bound on sufficiently smooth
and slowly varying functions φ.
The condition (2) can be applied only when the target

function is differentiable. In our framework, we consider
more general functions without differentiability: the Hölder
continuity jφðxþ ϵÞ − φðxÞj ¼ OðϵqÞ for fixed 0 < q ≤ 1
[48]. To be more precise, we impose a general constraint:

sup
0<ϵ<a

Z
L

0

dx
L

����φðxþ ϵÞ − φðxÞ
ϵq

����
2

≤
M2

L2q ; ð3Þ

where a > 0 is a constant that does not affect the estimation
error in the limit of large N. The special case with q ¼ 1
reduces to Eq. (2).
Estimation methods.—Given the target function φ under

the constraint (3), there exist estimation methods that
ensure a finite estimation error δ defined in Eq. (1). We
here compare the two different methods. (i) In the position-
state (PS) method, we estimate the individual phases φðxjÞ
at several positions xj and then computationally reconstruct
the entire function. (ii) In the wave-number-state (WS)
method, we prepare a sufficiently large number of wave
functions ψðxÞ ∝ eiφðxÞ and estimate the function φ by
reconstructing the quantum state jψi by the quantum
tomography. We find that the numbers of particles N
required for these two methods are the same up to a
constant factor.
Position-state method.—The PS method can be used

when the target function is relatively small, say, jφðxÞj ≤
π=3 for all x. In this case, we can circumvent the phase
wrapping problem and employ a method analogous to the
kernel density estimation [49].
In the first step, we sample n1 positions x1; x2;…; xn1 in

the interval 0 ≤ x ≤ L with equal spacing. Then, the phase
φj ¼ φðxjÞ at each position xj is measured by using n2
particles localized at xj. The estimation error δind of the
individual phase φj is known [4,50] as it is the quantum

metrology on a scalar parameter; the SQL δind ¼ Oðn−1=22 Þ
is established by the probe ð1= ffiffiffi

2
p Þðjxj;−iþjxj;þiÞ⊗n2 and

the Heisenberg limit δind¼Oðn−12 Þ by ð1= ffiffiffi
2

p Þðjxj;−i⊗n2þ
jxj;þi⊗n2Þ. Finally, the function estimator φ̃ðxÞ is com-
puted from the individual estimators φ̃j by local linear
smoothing [51]:

FIG. 1. Schematic illustration of quantum estimation of func-
tions. First, some multiparticle state is prepared as an input probe
state. It then passes through a phase-shift gate Ûφ generated by a
spatially varying field φðxÞ that we want to know. Finally, the
output probe state is measured, whence the estimated field φ̃ðxÞ is
computed.

PHYSICAL REVIEW LETTERS 124, 010507 (2020)

010507-2



φ̃ðxÞ ¼
Xn1
j¼1

φ̃jfðx − xjÞ; ð4Þ

where f is a smoothing function. In the present case,
we may just set fðxÞ ¼ 1 for x ≤ ðL=2n1Þ and fðxÞ ¼ 0
otherwise. This corresponds to the approximation by the
value at the nearest site; i.e., we set φ̃ðxÞ ¼ φ̃j, where xj is
the point nearest to x.
The estimation error can be decomposed into two parts:

the statistical error δstat caused by the measurement and the
deterministic error δdet due to smoothing. The balance
between these errors can be tuned by the width l of
smoothing. The estimated value φ̃jðxÞ is of the same order

as δind, i.e., δstat ¼ Oðn−1=22 Þ for the SQL and δstat ¼ Oðn−12 Þ
for the Heisenberg limit. On the other hand, the determin-
istic error δdet is the variation of φðxÞ within the width
L=ð2n1Þ, which turns out to be δdet ¼ Oðn−q1 MÞ by virtue
of the constraint in Eq. (3).
For a given number of particles N ¼ n1n2, the optimal

accuracy is determined by the trade-off between δstat and
δdet. As a consequence of Young’s inequality, we obtain

δ ≥ Oðn−q1 MÞ þOðn−1=22 Þ ≥ OððM1=qN−1Þq=ð2qþ1ÞÞ ð5Þ

for the SQL and

δ ≥ Oðn−q1 MÞ þOðn−12 Þ ≥ OððM1=qN−1Þq=ðqþ1ÞÞ ð6Þ

for the Heisenberg limit. Therefore, the overall estimation
error δ is significantly larger than the traditional quantum
limit, which is an expected feature of the function estima-
tion. We note that entanglement of particles in different
positions is not necessary to achieve the Heisenberg
limit; such intersite entanglement does not enhance the
estimation of linear parameters, as suggested in studies of
quantum network sensors [52,53].
Wave-number-state method.—In the WS method, we

begin with the wave number eigenstate with zero eigen-
value:

R
L
0 ðdx=

ffiffiffiffiffiffi
2L

p Þ½jx;−i⊗np þ jx;þi⊗np �. We use the
one-particle state (np ¼ 1) for the SQL and a multipartite
EPR state (np > 1) for the Heisenberg limit.
By the phase-shift gate Ûφ, one obtains the output probe

state:

jSφi ¼
Z

L

0

dxffiffiffiffiffiffi
2L

p ½jx;−i⊗np þ einpφðxÞjx;þi⊗np �: ð7Þ

The estimation is conducted by reconstructing jSφi as
accurate as possible by measuring nc copies of the probe
state. For this purpose, we consider the projection PK onto
the subspace of wave numbers k such that jkj ≤ 2πK=L.
Since the postselected state jS�φi ∝ PKjSφi belongs to a
(2K þ 1)-dimensional Hilbert space, it can be identified by
the quantum tomography.

The error of the state reconstruction can be quantified by
the infidelity 1 − jhSφjSφ̃ij, where jSφ̃i denotes the recon-
structed state. In fact, we show in the Supplemental
Material [54] that the MSPE has can be bounded by the
expected infidelity as

δ2 ≤
π2

n2p
E½1 − jhSφjSφ̃ij�

≤
π2

n2p
ð1 − jhSφjS�φij2Þ þ

π2

n2p
E½1 − jhS�φjSφ̃ij2�

¼ δ2PS þ δ2QT: ð8Þ

Here, the error is divided into the postselection part δ2PS and
the quantum-tomography part δ2QT. The postselection error
can be bounded by the constraint (3) as δPS ≤ OðK−qMÞ
[54–56], while the results of the finite-dimensional tomo-
graphy imply npδQT ≤ OðK1=2n−1=2c Þ [57].
When np ¼ 1 and N ¼ nc, we have the trade-off relation

between δPS and δQT for the SQL:

δPS ¼ OðK−qMÞ; δQT ¼ OðK1=2N−1=2Þ: ð9Þ

By setting n1 ¼ K and n2 ¼ N=K, the errors δPS and δQT
can be mapped to the errors δdet and δstat in the PS method,
respectively. Therefore, the SQL in the WS method reduces
to that in Eq. (5) obtained by the PS method.
The error bound can be lowered for np > 1 and

N ¼ npnc, while K ≤ OðncÞ must be maintained in order
to robustly conduct the quantum tomography. Therefore,
the optimal trade-off relation for the Heisenberg limit is

δPS ¼ Oðn−qc MÞ; δQT ¼ Oðn−1p Þ: ð10Þ

By setting n1 ¼ nc and n2 ¼ np, this trade-off relation
corresponds exactly to the PS method, and we obtain the
same Heisenberg limit as in (6). However, there is a caveat
that in the output state (7) the phase ambiguity of φðxÞ
modulo 2π=np must be removed. We show in the
Supplemental Material [54] that this removal can be
handled by analogy with the Kitaev method [50].
Optimality of the SQL.—We have preposed the SQL (5)

and the Heisenberg limits (6) that can be achieved by both
the PS and the WS methods. We show that these limits are
in fact optimal; any theoretical method is subject to the
same bounds on the estimation error.
We first derive the theoretical lower bound on the SQL.

We consider the Fourier transform of the function φðxÞ:

φk ¼
Z

L

0

dx
L

e−2πikx=LφðxÞ: ð11Þ

On the wave number basis, the constraint (3) corresponds
to the suppression of high-wave-number components:
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φk ¼ oðk−qÞ. In particular, the special constraint (2) is
equivalent to

P∞
k¼1k

2jφkj2≤ðM2=8π2Þ, which can be seen
from Perseval’s equality. A generalization of this argument
leads to a sufficient condition on the constraint (3):

X∞
k¼1

k2qjφkj2 ≤
M2

2c20
; ð12Þ

wherec0¼2πqmax0≤x≤π½x−q sinx� is aq-dependent constant.
To utilize the known results in the discrete parameter

estimation [20,58], we focus on the functionswith only some
low-wave-number components. Using a K-dimensional
vector u ¼ ðu1;…; uKÞ, we parametrize the function φ as

φuðxÞ ¼
XK
k¼1

ffiffiffi
2

p
uk sinð2πikx=LÞ: ð13Þ

Such function φu meets the constraint if kuk ≤ ρ is satisfied
for ρ ¼ c−10 MK−q. Since ρ ¼ oð1Þ and

ffiffiffi
2

p
sinð2πikx=LÞ

forms an orthonormal basis, the MSPE δ2 of the function φ
can be bounded by mean-square error δ2u of the vector u.
Hence, instead of the function estimation, we may

consider the vector estimation in which case the error
can be evaluated by the quantum Cramér-Rao bound
(QCRB) [59,60]. For an unbiased estimation, the QCRB
is given as

δu ≥ δUUB ≔ Kðtr½JðuÞ�Þ−1=2; ð14Þ

where ½JðuÞ� is the Fisher information matrix defined for
the output probe state jψui as

½JðuÞ�jk ¼ 4Re

� ∂
∂uj ψu

����½1 − jψuihψuj�
���� ∂
∂uk ψu

�
: ð15Þ

Since the Fisher information is bounded from above by the
SQL [61], i.e., ½JðuÞ�jj ≤ 8N for each 1 ≤ j ≤ K, we
obtain a uniform, unbiased bound δUUB ¼ ðK=8NÞ1=2.
Although such a uniform bound is not applicable to the

biased estimation, there exists the worst-case biased bound
δWBB [54]. Within the region kuk ≤ ρ, one can find a vector
u satisfying

δu ≥ δWBB; δ−1WBB ≔ δ−1UUB þ ρ−1: ð16Þ

Since this biased version of the QCRB holds for any integer
K ≥ 1, we choose K that gives the maximal bound δWBB.
This is satisfied when ρ and δUUB are comparable to each
other—this case holds when we setK ¼ OððM2NÞ1=ð2qþ1ÞÞ.
Hence the SQL is given as

δ ≥ c1ðM1=qN−1Þq=ð2qþ1Þ; ð17Þ

where the constant factor c1 is bounded from below by
f½q�=½2ð2qþ 1Þ2�g½c−10 q�2q=ð2qþ1Þ.
Optimality of the Heisenberg limit.—We consider the

case in which entanglement between at most np (≥1)
particles is allowed. It is known that the quantum infor-
mation of a probe state is maximal when their wave
function is completely symmetric [62]. With completely
symmetric probe states, the problem becomes equivalent to
the estimation of an effective phase npφðxÞ with nc ¼
n−1p N separate particles; the probe states in Eq. (7) serve as
an example for the WS method.
Since the function of interest φ is replaced by its effective

one npφ, the MSPE δ2 and the normalization constant M
are replaced by n2pδ2 and npM, respectively. This argument
leads to a generalized limit:

npδ ≥ c1½ðnpMÞ1=qðn−1p NÞ−1�q=ð2qþ1Þ

¼ c1ðMnqþ1
p N−qÞ1=ð2qþ1Þ: ð18Þ

To restore the original function φðxÞ from the estimate of
npφðxÞ, we need to resolve the phase ambiguity by 2π=np.
For this purpose, the left-hand side of Eq. (18) should not
exceed π, giving

np ≤ ½ðπc−11 Þð2qþ1Þ=2M−1Nq�1=ðqþ1Þ: ð19Þ

With the maximal np substituted in Eq. (18), we obtain the
Heisenberg limit

δ ≥ c2ðM1=qN−1Þq=ðqþ1Þ; ð20Þ

where the constant c2 is at least ðπ−1c1Þð2qþ1Þ=ðqþ1Þ.
Extension to smoother functions.—The degree of

smoothness can further be extended into q > 1, where
the target function is known to be more than just
differentiable. For an integer m and 0 < σ ≤ 1 satisfying
q ¼ mþ σ, the constraint for smoother functions is given as

sup
0<ϵ<a

Z
L

0

dx
L

����φ
ðmÞðxþ ϵÞ − φðmÞðxÞ

ϵσ

����
2

≤
M2

L2q : ð21Þ

Our results in the PS method and the optimality are also
valid for q > 1, thus leaving the quantum limits (5) and (6)
unchanged.On the other hand, the straightforward extension
of the WS method into q > 1 does not work. Therefore, the
asymptotic equivalence between the PS method and theWS
method can be obtained only for 0 < q ≤ 1. See the
Supplemental Material for more details [54].
Comparison with Gaussian signal estimation.—The

error bounds we have obtained here are related to that of
the Gaussian signal estimation [40,41,63], in which the
time-dependent phase φt is subject to a Gaussian process
with the power spectrum IðωÞ ∼ jωj−p. The estimation
error of an instantaneous phase φt¼0 is OðN −ðp−1Þ=2pÞ for
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coherent states and OðN −ðp−1Þ=ðpþ1ÞÞ for squeezed states,
where N is the photon flux [41]. This can exactly be
mapped into the SQL OðN−q=ð2qþ1ÞÞ and the Heisenberg
limit OðN−q=ðqþ1ÞÞ in our study by setting p ¼ 2qþ 1. In
fact, almost all sample functions of the Gaussian process φt
satisfy Eq. (21) by taking a large time span [46,64].
Therefore, the estimation error of the Gaussian process
is subject to the quantum metrology of function estimation.
We suspect that this fact is related to the min-max theorem
[65,66], which explains the consistency between the
Bayesian and non-Bayesian estimation methods, though
a clear connection is yet to be established.
Conclusion and outlook.—In this Letter, we have estab-

lished the fundamental limits on function estimation subject
to a bounded qth-order differentiability. The estimation
error is bounded from below by OðN−q=ð2qþ1ÞÞ in the
standard quantum limit andOðN−q=ðqþ1ÞÞ in the Heisenberg
limit. These results reduce to the previous studies on the
signal estimation in quantum optics [40,41] when
the target function is an infinitely extended stochastic
process. We have presented two theoretical methods of
the functional quantum metrology, both of which saturate
the fundamental limits for 0 < q ≤ 1.
This is a fundamental result for the efficient detection of

functional structures—continuous signals and images, for
example—which is a common target of estimation today. In
fact, our results set fundamental theoretical bounds on
various types of analysis relying on the function structure,
such as model prediction or feature extraction [67,68]. On
one hand, these bounds indicate the critical point where
quantum methods outperform classical methods on func-
tional data, with the scaling laws different from those
obtained from parameter estimation. On the other hand, our
result shows the optimal strategies for the quantum esti-
mation of functions, such as an appropriate choice of
temporal or spatial resolution and the size of entanglement.
We note that choice of resolution is crucial in the real
application [23,45,69,70], and what is more in the quantum
case, we have seen that larger entanglement does not
necessarily mean better accuracy.
The framework presented here enables further quantum

information-theoretic analysis on functions, such as a
quantum version of the Nyquist-Shannon sampling
theorem which concerns the exact equivalence between
the position and wave-number states in the signal dete-
ction, including the Oð1Þ prefactor that has remained
undetermined.
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