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The decomposition of large unitary matrices into smaller ones is important because it provides ways to
the realization of classical and quantum information processing schemes. Today, most of the methods use
planar meshes of tunable two-channel blocks; however, the schemes turn out to be sensitive to fabrication
errors. We study a novel decomposition method based on multichannel blocks. We have shown that the
scheme is universal even when the block’s transfer matrices are chosen at random, making it virtually
insensitive to errors. Moreover, the placement of the variable elements can be arbitrary, so that the scheme
is not bound to specific topologies. Our method can be beneficial for large-scale implementations of unitary
transformations by techniques, which are not of wide proliferation today or have yet to be developed.

DOI: 10.1103/PhysRevLett.124.010501

Linear transformations of multiple channels are ubiqui-
tous in many applied fields, as well as in fundamental
research. The implementations of linear multichannel
transformations are particularly important in the optical
context, in which they are used as indispensable compo-
nents of communication and computing systems, in par-
ticular, those based on novel approaches to information
processing. For example, universal optical interferometers
—devices capable of performing arbitrary linear trans-
formations—are exploited as mode unscramblers [1] or as a
part of photonic neural networks [2,3].
In addition to classical applications, universal optical

interferometers play an important role in the implementa-
tions of quantum algorithms. In particular, multichannel
interferometers are a necessary part of the promising
quantum computing platform that leverages linear-optical
circuits and nonclassical properties of photons to realize
quantum algorithms [4,5]. Recent works have demon-
strated the versatility of linear-optical quantum systems
and their ability to perform a number of quantum comput-
ing tasks ranging from the well-known algorithms [6,7] to
the more specific ones, such as boson sampling [8–10] and
variational algorithms [11–13]. The efficient realization of
the later two classes of algorithms was made possible by the
universal programmable interferometers [14].
The complexity of the multichannel scheme, which is

quantified by the number of channels in the interferometer
and its programmability, defines its practical utility. These
characteristics, however, are largely determined by a
particular architecture used to construct the interferometer.
Nowadays, the most widely used universal architectures
belong to different planar varieties. One reason for this is

the fact that planar schemes are easier to realize by the
mature integrated photonics technology. On the other hand,
methods have been devised that enable the decomposition
of large unitary matrices into planar meshes of smaller
building blocks.
The decomposition methods of wide use today are

obtained from the unitary matrix factorization theorem
proposed in [15], which was adopted to construct planar
reconfigurable schemes, e.g., in [16,17]. In the linear-
optical context, such a multichannel scheme has a form of a
mesh, constructed out of tunable Mach-Zehnder interfer-
ometers (MZIs), thereby enabling the whole interferometer
to be reconfigured by tuning the variable phase elements
[16,17]. For these schemes to be universal, the beam splitters
that constitute the MZIs should necessarily be balanced,
therefore, imposing strict requirements on the fabrication
tolerances. However, in practical implementations this
condition is not fully satisfied, so that the multichannel
transformation is universal only to a certain degree [18]. This
negative effect becomes more pronounced as the interfer-
ometer scheme is scaled up. Therefore, the realization of
sophisticated information processing algorithms with optics
calls for the development of novel architectures for multi-
channel interferometers that are more resilient to the
implementation errors.
In this Letter we explore an alternative approach to

building large-scale universal interferometers, which is
drastically different from the known methods based on
meshes of two-channel blocks. It is based on sequences of
fixed multichannel mixing blocks instead of arrays of
balanced beam splitters. As a result, the interferometric
scheme provides the freedom to choose the transfer matrix
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of the blocks out of the continuous unitary space.
Surprisingly, such schemes turn out to be extremely robust
to perturbations in the transfer matrices of the blocks, in
fact, as we show below, they may be chosen at random, and
the desired transformation may be dialed later on the
manufactured device by tuning the phase shifts only. In
addition, the placement of the variable phase shifts in the
scheme can also be chosen arbitrary. Since no relation to
the scheme topology is implied in the analysis, a wide
variety of technologies can be used to realize it in practice,
for example, those based on frequency and temporal
encoding, that may potentially enlarge the scale of the
universal interferometric schemes.
Methods of decomposition of unitary matrices.—Several

types of parametrization for unitary matrices are known
[15,19–21]; however, only a few of them give a recipe to
build up large devices out of elementary blocks, which is
convenient to realize in practice. Linear optics is the most
representative domain of practical application for multi-
channel transformations, where their implementations are
employed to transform the input vector of field amplitudes
aðinÞ into the output vector aðoutÞ by transformation,
described by a matrix U: aðoutÞ ¼ UaðinÞ. Following the
decomposition methods, the required matrix U, that can be
regarded as a SUðNÞ transformation, is obtained by setting
appropriate values of some parameters, characterizing the
elements in the actual physical network [16,17].
A natural building block for multichannel schemes in the

context of optics is a MZI consisting of a pair of static
balanced beam splitters and two variable phase shifters.
Adding a third phase to the MZI allows us to cover an entire
SU(2) group [22] with the 2 × 2 transformation matrix:

eiψUMZIðθ;φÞ ¼ eiðψ−πÞ=2XeiðθþπÞZeiðφ−πÞ=2X; ð1Þ

where X and Z are the Pauli matrices, φ, θ, and ψ are the
phase parameters.
Although, in principle any fixed beam splitter trans-

formation mixing a pair of optical modes densely generates
SUðNÞ [23], a more efficient way is to implement a
network scheme allowing us to program the required
unitary using tunable MZIs. The experiments reported in
[4,14,24,25] have demonstrated the capabilities of such a
network design to experimentally approximate arbitrary
unitaries. However, the performance of the linear optical
network heavily depends on the quality of individual MZI
elements. For example, the work [18] studied the effect of
individual beam splitter errors on the overall fidelity and
concluded that the beam splitter reflectivity errors of few
percents diminish the quality of the unitary transformations
significantly. This makes a subset of unitary transforma-
tions unavailable for the programmable linear optical
network composed of imperfect optical elements [26].
As an illustrative example, consider the decomposition

proposed in [17], which is widely used today to construct

reconfigurable planar optical schemes. The corresponding
scheme layout is illustrated in Fig. 1(a) for a number of
inputs and outputs N ¼ 6. Its main building block—an
MZI is depicted in Fig. 1(b). Figure 1(c) illustrates the
negative effect of the beam splitter imbalances on the
quality of the transformation, clearly witnessing the sensi-
tivity of this decomposition to errors.
Layered decompositions with static multichannel

blocks.—The decomposition we study in this Letter is
based on static multichannel blocks, rather than two-
channel balanced beam splitters. The schematic of the
decomposition is shown in Fig. 2. It is built up of multiple
layers, that come in two types, which are stacked alter-
nately. The variable layer consists of independent single
phase shifts φj, so that its N-channel transfer matrix
has the diagonal form: Φðφ⃗Þ ¼ diag½expðiφ⃗Þ�, where φ⃗ ¼
ðφ1;φ2;…;φNÞ is a vector of phase shifts; thus, we call it
the phase layer. The other type of layer, in the following
referred to as the mixing layer, introduces interaction
between the channels that is required for multichannel

1
2
3
4
5
6

φ 2θ

=
BS1 BS2

0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Fidelity

P
D

F

(c)

II

II

IIII

(a)

(b)

FIG. 1. The planar universal design of a multichannel decom-
position proposed in [17]. (a) The scheme layout for N ¼ 6.
(b) The building block of the scheme—an MZI with two tunable
phase shifts, θ and φ, and static balanced beam splitters, BS1 and
BS2. (c) The histograms illustrating fidelity of transformations
[see formula (4)] for multichannel schemes with N ¼ 10,
corresponding to three error models: (I) all static beam splitters
are biased by an equal angle α, chosen randomly in the range [0;
20] degrees (red); (II) the beam splitters are biased independently
by angles αj distributed in the range ½−20; 20� degrees (green);
(III) the beam splitters are biased independently by angles αj
distributed in the range [0; 20] degrees (blue). Each histogram
was obtained by an optimization procedure that found a global
maximum of fidelity with respect to the set of phase shifts,
collected over 1000 randomly generated unitary matrices.

(1) (2) (3) (N) (N+1)

V (1) V (2) V (N)

1
2
3

N
N-1

...

FIG. 2. A schematic of a matrix decomposition (2) the number
of layers K ¼ N corresponding to N − 1 phase shifts in
each layer.
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interference. It is the aim of our work to find out what
transfer matrices VðmÞ should these mixing layers have in
order for the whole scheme to be universal. Moreover, we
are interested in a general case, when the mixing layers can
have different transfer matrices VðmÞ, so that the overall
transformation has the following form:

U ¼ ΦðKþ1ÞVðKÞΦðKÞ·;…; ·Vð1ÞΦð1Þ ð2Þ

where ΦðmÞ ¼ Φ½φ⃗ðmÞ� with φ⃗ðmÞ being the set of phases
describing the layer with index m, K is the number of
mixing layers. The decomposition (2) enables a variety of
schemes, each having different number of layers K at a
given N. Here, we describe the case of K ¼ N [27].
Previous works considered special cases of decomposi-

tion (2) with specific choice of VðmÞ. A design of the form
(2) with the mixing layers described by the discrete Fourier
transform matrix:

UðDFTÞ
mn ¼ 1

ffiffiffiffi
N

p exp

�

i
2π

N
ðm − 1Þðn − 1Þ

�

; ð3Þ

m, n ¼ 1;…; N, implemented in a planar integrated pho-
tonic circuit was studied in [33]. Work [34] deals with the
mixing layers implemented by regions of coupled wave-
guides. The authors of these works provided some numeri-
cal evidence in favor of universality of this specific types of
circuits. In both these works, the transfer matrices of the
mixing layers were essentially defined with a specific
system in mind. Besides, the number of phase shifts per
layer was N − 1, which is a maximum possible number.
Relevant ideas concerning decomposition (2) can be found
in [33,35,36]. In this Letter, we show that the class of
transfer matrices VðmÞ suitable for universal programmable
schemes is not bounded to some specific instances, to the
contrary, it occupies a large part of the SUðNÞ group
volume.
We first notice that by simple counting of independent

parameters necessary to define an arbitrary unitary matrix,
a universal scheme performing an SUðNÞ transformation
should have at least N2 − 1 tunable phase shifts. We will
restrict our attention to the schemes using exactly this
minimal set of phases.
We quantify performance of the decomposition (2) by

fidelity, defined as:

FðU;UsÞ ¼
1

N2
jTrðU†UsÞj2; ð4Þ

which compares a target unitary matrix Us and an actual
transfer matrix realized by the decomposition U (2).
Provided that the matrices U and Us are equal up to a
global phase, fidelity (4) gets its maximum value F ¼ 1.
In contrast to the known decomposition of [17], which

comes with an analytical procedure allowing us to obtain a

set of phases at which F ¼ 1 for any givenUs, we could not
find an analytical solution for the general decomposition
(2). Therefore, a numerical optimization procedure has
been used. Our numerical algorithm is based on the basin-
hopping algorithm realized using the SciPy python library.
Given a unitary matrix Us, the algorithm was searching for
a global minimum of infidelity 1 − F over the space of
phase vectors φ⃗ðmÞ (m ¼ 1;…; K þ 1). To decrease the
chance of sticking into local minima, we used multiple runs
of the basin-hopping routine with random initial values of
the phases. The algorithm has reasonable efficiency and has
subexponential runtime dependence on the interferometer
size [37]. This way, we have achieved the error of
calculating the global minimum on the level of ∼10−9
[37]. Each numerical experiment involved optimization
over a series of 1000 matrices Us.
Let us now discuss the choice of the transfer matrices of

the mixing layers, used in construction of multichannel
transformations. Surprisingly, not only specific fixed uni-
taries are suitable, but almost any unitary matrix will work
as a mixing layer. Moreover, the mixing transformation
need not be fixed, it can vary from layer to layer. To
demonstrate that, we chose every matrix VðmÞ in (2) at
random using the very same approach, described above for
the generation of Us. Figure 3 presents the results of
optimization for decomposition depicted in Fig. 2(a) for the
case of a fixed transfer matrix, namely a DFT matrix (3),
and random transfer matrices of the mixing layers. In the
optimization process we varied the number of phase layers,
ranging from small values containing less phase shifts than
required for universality, which is done for illustrative
purposes, to the proper number containing in total N2 − 1
phase shifts. The worst value of infidelity corresponding to
the latter case for all matrix sizes presented was not greater
than 1 − F < 10−9 and its nonvanishing value is attributed
to the finite accuracy of the implementation of the numeri-
cal algorithm.
To make sure, that our result is not a mere artifact of

high-dimensional random matrix generation, we have
considered a specific example of an SU(6) transformation
corresponding to a probabilistic linear optical CNOT gate
[38]. We were able to reproduce this particular unitary with
infidelity of ∼10−8 using random mixing layers [27].
To demonstrate that our architecture is resilient to

practical constraints and errors that can undermine the
universality of the interferometer, we have added random
perturbations to the mode mixing layers according to the
following procedure. First, we construct the parametrized
matrix

TðmÞ
α ¼ ð1 − αÞVðmÞ

0 þ αR; ð5Þ

which is a weighted sum of an initial matrix VðmÞ
0 , and a

Haar-randomperturbationR,modeling imperfections. Since

TðmÞ
α is nonunitary at 0 < α < 1, we then apply the singular
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value decomposition: TðmÞ
α ¼ Wðm;LÞ

α DðmÞ
α Wðm;RÞ

α , where

Wðm;LÞ
α and Wðm;RÞ

α are unitary matrices and DðmÞ
α is a

diagonal matrix. The unitary part of (5) as VðmÞ
α ¼

Wðm;LÞ
α Wðm;RÞ

α . Even for a rather high value of α ¼ 1 we
have observed essentially no effect of the perturbation on the
infidelity with an ideal CNOT matrix.
There are obvious examples of matrices which are not

suitable for mixing layers, such as an identity matrix I or
permutation matrices. However, as our numerical results
suggest, the relative volume of these matrices is negligible

for largeN. Parametrized families of matrices VðmÞ
α allow us

to analyze the worst case performance of our scheme.
Changing R in (5) with I we can see how close to a worst
case we can get before the scheme becomes nonuniversal.
For each value of α a series of 300 target matrices Us and

block transfer matrices VðmÞ
0 were generated at random from

a Haar-uniform distribution and fidelity (4) was maximized
over the space of phase shifts. Figure. 4 demonstrates the
infidelity of total transformation 1 − F as a function of
parameter α along with the infidelity for blocks 1 − S,

where S ¼ P
N
m¼1 FðVðmÞ

0 ; VðmÞ
α Þ=N is fidelity between the

initial and the perturbed block transfer matrices. As can be
seen from the figure, while S for each block grows
monotonically, the dependence of infidelity for the whole
transformation has a clear threshold behavior; namely, it

stays on the constant level of accuracy of the numerical
algorithm as far as α does not exceed value ≈0.5 after
which it grows abruptly. We did not study the dependence
of the threshold value of α on the interferometer size N in
details, but results for N ¼ 5 and N ¼ 10 suggest, that it
may slightly increase with increasing N [27].
Theoretical framework.—The strict proof of the univer-

sality implies showing that the transformations Uðfφ⃗ðmÞgÞ
should form a group under matrix multiplication and then

FIG. 3. Fidelity of transformation for the decomposition depicted in Fig. 2(a) forN ¼ 10, 20, and 30 and different choice of the mixing
layer transfer matrices. The figures of the top row correspond to probability density function (PDF) at transfer matrices VðmÞ ¼ UðDFTÞ,
while the bottom row corresponds to all VðmÞ taken at random. Each histogram is a collection of 1000 fidelity values, corresponding to
randomly sampled target unitary matrix. Different numbers of phase layers were used to illustrate the convergence of the schemes to
universal, which correspond to the maximum phase layers of N þ 1.
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FIG. 4. Infidelity of transformation 1 − F and dissimilarity of

block transfer matrices 1 − S, where S ¼ P
N
m¼1 FðVðmÞ

0 ; VðmÞ
α Þ=

N, as a function of parameter α atN ¼ 10. The circles correspond
to the average values; the lower and upper boundaries of the
shaded regions are the averages of the 10 best and worst
infidelities, respectively.
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prove that this group densely covers the SUðNÞ group of
the corresponding dimension. We could not find the
rigorous proof neither for the simplest nontrivial case of
N ¼ 3 nor for the general case of arbitrary dimension.
However, we have worked out preliminary considerations
on the structure of the manifold described by (2) [27].
Conclusion.—Our work demonstrates that multichannel

layered schemes provide an alternative architecture for
universal linear-optical unitaries. This architecture is not
limited to specific strictly predefined transfer matrices, such
as, for example, a discrete Fourier transformation as in
previous proposals [35,39]. Namely, we have shown that
the transfer matrices of the static blocks can be chosen from
a continuous class of unitary matrices at random without
sacrificing the quality of approximation for an arbitrary
target unitary. This also comes immediately with resilience
to errors that usually occur in implementations. In practice,
the interferometer manufactured with imperfect mixing
layers may be tuned to implement the desired transforma-
tion postfactum by tuning the phase-shifts only and
optimizing the measured fidelity with the desired trans-
formation [25]. Therefore, these results, showing that one
does not necessarily need to carefully engineer the building
blocks of the schemes to be able to reach almost any matrix
in the unitary space, are of primary importance for
experimental applications.
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