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Classically integrable approximants are here constructed for a family of predominantly chaotic periodic
systems by means of the Baker-Hausdorff-Campbell formula. We compare the evolving wave density and
autocorrelation function for the corresponding exact quantum systems using semiclassical approximations
based alternatively on the chaotic and on the integrable trajectories. It is found that the latter reproduce the
quantum oscillations and provide superior approximations even when the initial coherent state is placed in a
broad chaotic region. Time regimes are then accessed in which the propagation based on the system’s exact
chaotic trajectories breaks down.
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Introduction.—A fundamental dichotomy between the
quantum and the classical theories in physics is that, while
the first is governed by a linear equation, the latter allows
for much more dynamical complexity due to its general
nonlinearity. Such nonlinearities are a requisite for chaos in
Hamiltonian mechanics, and their absence in the quantum
world indicates that chaos must be somewhat filtered out in
a microscopic description of nature. Research carried out in
the second half of the 20th century has subsequently shown
that even if Schrödinger’s equation forbids chaos, the
quantum mechanics corresponding to classically chaotic
systems can be considered as a field on its own—even
though, strictly speaking, “there is no quantum chaos, only
quantum chaology” [1].
An important branch of quantum chaos is dedicated to

reproducing quantum dynamics using solely the input
extractable from the trajectories of its classical counterpart.
This is most often achieved by picking one from a plethora
of methods that relate trajectories to quantum objects such
as the density of states [2], the autocorrelation function [3],
the Wigner distribution [4] or the wave function [5,6].
These semiclassical approximations are usually obtained
from asymptotic methods that explore the smallness of ℏ
with respect to the typical classical action, so it is expected
that ℏ limits the size of the semiclassically relevant phase-
space structure. Quantum mechanics should then be
immune to the intertwining of classical trajectories, a
characteristic of chaotic evolution, in regions with area
smaller than ℏ [3,7].
There is strong evidence, however, that quantum

mechanics can be accurately reproduced by employing
classical trajectories even when they are chaotic, despite the
“ℏ-area rule” [3,8,9]. We here shift direction by investigat-
ing the extent to which the trajectories of a specifically
tailored integrable system supply a semiclassical approxi-
mation for the exact quantum evolution corresponding to a
chaotic system—and for how long. The subject is further

enriched by comparing the semiclassical results obtained
from the effective (regular) trajectories with the exact
(chaotic) ones. Although the substitution of chaotic objects
by integrable approximations has been employed in, e.g.,
chaos assisted tunneling [10,11] and high harmonic gen-
eration [12], a deeper investigation of this idea has not yet
been pursued.
We apply our methods to the propagation of an initial

coherent state under the dynamics of the recently intro-
duced “coserf map” [9], which is exactly quantizable and
has a phase space with mixed regular and chaotic regions.
The short, long, and very long time regimes are examined
for a kicking strength that renders the system strongly
chaotic. The effective integrable system is devised using the
Baker-Hausdorff-Campbell formula and its trajectories are
obtained using a recently proposed numerical algorithm
able to deal with Hamiltonians that are not sums of kinetic
and potential terms [13]. The semiclassical approximations
are calculated using the Herman-Kluk propagator, which is
very accurate and easily modified to deal with discrete
times [9,14,15].
Discrete dynamical systems.—Hamiltonians with time

dependence of the form

Hðq; p; tÞ ¼ p2

2
þ TVðqÞ

X
k

δðt − TkÞ; k ∈ N; ð1Þ

where q is the position, p is the momentum, and V is a
position-dependent potential, present exact solutions to
Hamilton’s equations and are extensively studied in the
context of quantum chaos. The reason for their repeated use
is that the corresponding equations of motion are expressed
as a discrete map, which can be chaotic even for a single
degree of freedom. Here, the sum of delta functions
expresses the fact that the potential energy is turned on
at times τ, multiples of the kicking strength T, outside of
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which the system evolves with constant momentum p. The
corresponding equations of motion generate stroboscopic
maps, e.g., the standard map [16], that split propagation
into purely kinetic and purely potential steps. By writing
Hamilton’s equations for a phase-space point z ¼ ðq; pÞ
using Poisson brackets as dz=dt ¼ fz;Hg we can express
the orbits of Eq. (1) for a single kick as a composition of
two shears generated by two separate Hamiltonians [9]:

H1ðpÞ ¼ p2=2 ⇒ U1
Tð·Þ ¼ expð−TfH1; ·gÞ

H2ðqÞ ¼ VðqÞ ⇒ U2
Tð·Þ ¼ expð−TfH2; ·gÞ: ð2Þ

Using the group property of the solutions above, the final
point at τ ¼ NT for N kicks with kicking strength T is

zN ¼ UN
T ðz0Þ ¼ ðU2

TU
1
TÞNðz0Þ: ð3Þ

Since the flow can be decomposed as successive map-
pings of the integrable steps in Eq. (3), which are exactly
quantizable, the corresponding quantum propagation is
exact. Quantization for each Hamiltonian evolution in
Eq. (3) is then straightforwardly given by q ↦ q̂,
p ↦ p̂, and f; g ↦ ½; �=iℏ, so that Uj

T ↦ Ûj
T; j ¼ 1, 2,

without the need of any ordering considerations. We shall
focus on an initial coherent state centered at z0 ¼ ðq0; p0Þ:

hqjz0i ¼ ðπℏÞ−ð1=4Þ exp ½−ðq − q0Þ2=2þ ip0ðq − q0Þ=ℏ�;
ð4Þ

for which the exact quantum evolution in position repre-
sentation after N kicks with kicking strength T is

hqjz0; Ni ¼ hqjÛN
T jz0i ¼ hqjðÛ2

TÛ
1
TÞN jz0i: ð5Þ

Effective Hamiltonians.—Using the Baker-Hausdorff-
Campbell formula [17] we can approximate the two steps
in Eq. (3) by an effective one:

e−TfH1;·ge−TfH2;·g ≈ e−TfH;·g; ð6Þ

where, up to third order in T,

H ¼ H1 þH2 þ ðT=2ÞfH1; H2g þ ðT2=12ÞfH1

−H2; fH2; H1gg − ðT3=24ÞfH2; fH1; fH1; H2ggg:
ð7Þ

The effective HamiltonianH above is time independent, so
its solutions for a period T can be considered as perturba-
tions of the original system for both the classical and
quantum cases. Note also that H cannot be generally
expressed as a sum of potential and kinetic energies due
to terms proportional to fH1; H2g not vanishing—a
Hamiltonian of this type is known as nonseparable (even

though the system itself is integrable). This implies that
solving the equations of motion associated to H, namely,

dz=dt ¼ fz;Hg; ð8Þ

is best done through the use of special numerical integrators
that both preserve the invariants of classical mechanics
(such as phase-space areas) and can be applied to non-
separable functions. These integrators are called nonsepar-
able symplectic integrators, and until very recently were
limited to algorithms given in terms of computationally
expensive implicit functions, being only accurate for short
times. Here, however, we are interested in classical propa-
gation for times long enough for chaotic behavior to set in
and dominate phase space. We then implement the explicit
algorithm recently proposed by Tao [13], which consists of
injecting the system in a larger phase space where its
equations of motion are separable, solving them, and
projecting the solutions back. We refer to the original
article [13] for error estimates and an accessible exposition
of the method. Naturally, depending on the time regimes of
interest, simpler numerical integration algorithms (e.g.,
Runge-Kutta or Adams-Bashforth) can be used. For times
long enough for the system to perform several revolutions
around the origin, however, symplectic methods are usually
preferred [18].
In Fig. 1 we display some discrete orbits of Eq. (3) for

the coserf system, defined by

VcoserfðqÞ ¼ q2=2 − 2 cosðqÞ − ffiffiffi
π

p
erfðqÞ=2; ð9Þ

and their integrable approximations, obtained by applying
Tao’s method to the effective HamiltonianH in Eq. (7). All
algorithms to integrate Hamilton’s equations are discrete,

FIG. 1. Exact (black dots) and effective (red lines) orbits for the
coserf map calculated, respectively, via the iterative map (3) and
the solutions of Eq. (8) with δ ¼ 10−2. Panel (a) uses T ¼ 0.1, for
which the map displays solely regular trajectories, but for panel
(b) we choose T ¼ 0.6 and a very large chaotic region is
presented. Notice how the effective dynamics is simply an
interpolation of the exact map for (a), but for (b) no apparent
connection between effective and exact dynamics is seen except
for the regular regions near the origin.
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meaning that they have a small iteration step, and the step δ
we used to numerically solve Eq. (8) is small enough for the
solutions to look continuous when compared to the discrete
dynamics of Eq. (3). Notice that even though both T and δ
represent distances between iterations, they are very differ-
ent in nature: The kicking strength T is seen as a true
dynamical parameter that we vary in order to achieve chaos
in Eq. (3); δ, on the other hand, is just a numerical iteration
step that we take as small in order to obtain good accuracy
in solving Eq. (8). We use the simplest version of Tao’s
algorithm, for which the trajectories obtained from Eq. (8)
have errors of Oðδ3Þ.
As the trajectories are functions of position and momen-

tum, it is worthwhile to look at how an initial phase-space
distribution evolves under both the chaotic and the effective
dynamics in order to have a clear picture of their contrast.
The obvious choice is the phase-space Gaussian

Wðq; pÞ ¼ exp f−½ðq − q0Þ2 þ ðp − p0Þ2�=ℏg=πℏ; ð10Þ

which can be identified with the Wigner function for the
coherent state (4) [19]. The evolution of this distribution by
classical trajectories corresponds to the approximation of
Wigner evolution to lowest order in ℏ [20–22]. The results
of both the chaotic and integrable classical evolutions are
depicted in Fig. 2, where it is seen that the initial
distribution deforms into a filament that develops “whorls”
and “tendrils” [7] when exposed to chaotic propagation, but
remains completely regular and well behaved under the
effective dynamics.
The Herman-Kluk propagator.—Extensively used after

its introduction in Ref. [6], the Herman-Kluk propagator
has been adapted to discretized times in several papers
[9,14,15]. We express it for τ ¼ TN as

kNðQ0; QÞ ¼ 1

2πℏ

Z
dz0RðzNÞhQ0jzNihz0jQieði=ℏÞSðzNÞ;

ð11Þ

where hz0jQi is the complex conjugate of Eq. (4) and
hQ0jzNi is obtained from substituting ðq0; p0Þ by ðqN; pNÞ
in Eq. (4). In Eq. (11), jQi and jQ0i are position eigenstates,
dz0 ¼ dq0dp0 and

RðzNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�∂pN

∂p0

þ ∂qN
∂q0 þ

i
ℏ
∂pN

∂q0 − iℏ
∂qN
∂p0

�s
; ð12Þ

SðzNÞ ¼ T
XN
k¼1

�
pk

�
qk − qk−1

T

�
−Hðqk; pkÞ

�
: ð13Þ

The square root in Eq. (12) can and usually does change
branch in the complex plane throughout evolution, and it is
fundamental to keep track of these changes in order to
match the final phases (a procedure known as Maslov
tracking [23]). The semiclassical approximation for the
propagation of a coherent state by the Herman-Kluk
method is, therefore,

hQjz0; Ni ≈
Z

dQ0kNðQ0; QÞhQ0jz0i: ð14Þ

When implementing this formula for the map (3) we take
τ ¼ TN, and for the effective trajectories that solve Eq. (8)
we use τ ¼ δM in Tao’s algorithm, whereM is chosen such
that the final propagation times are the same for both the
chaotic and the effective orbits, i.e., TN ¼ δM ⇒
M ¼ NðT=δÞ. These propagation times were already used
in Fig. 2. The semiclassical wave densities jhqjz0; Nij2 for
both propagation schemes are plotted against the exact
quantum result in Fig. 3 for the same time values as
in Fig. 2.

FIG. 2. Classical propagation of the Wigner function of a
coherent state initially centered at (q ¼ 4, p ¼ 0). The initial
distribution is shown in the inset. The kicking strength is T ¼ 0.6,
as in Fig. 1(b), and δ ¼ 10−2 in Tao’s algorithm. Chaotic
propagation is shown in black, while its effective approximation
is superposed in light red. Panel (a) depicts evolution for N ¼ 38
in Eq. (3), while for panel (b) N ¼ 87.

FIG. 3. Wave densities for the time evolution of the coherent
state (4) obtained via the Herman-Kluk propagation (14) and the
quantum map (5) for T ¼ 0.6. The exact quantum result is
displayed as a solid black line, while the semiclassical prop-
agations using effective and chaotic trajectories are shown in
solid red and dashed gray lines, respectively. We take ℏ ¼ 1 and,
as in Fig. 2, δ ¼ 10−2, (a) N ¼ 38 and (b) N ¼ 87.
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As usual in the field, the semiclassical wave densities in
Fig. 3 obtained from the chaotic dynamics need to be
renormalized in order to have

R
dqjhqjz0; Nij2 ¼ 1, since it

is well known that the wave functions obtained via the
Herman-Kluk propagator might lose normalization due to
the effect of rapidly separating chaotic orbits in its prefactor
(12) [24]. The wave function obtained using effective
trajectories, however, comes out entirely normalized, since
the obstruction to full normalization is due exclusively to
chaos. The regularity of the effective trajectories is also
responsible for providing very stable results, for which
changing grid sizes reflects exclusively on visual resolu-
tion; This is in stark contrast with the propagator based on
chaotic trajectories, which suffers large deviations depend-
ing on the initial grid. Complex procedures to dampen the
effect of extreme sensitivity to initial grids in chaotic
propagation can be implemented, as in Ref. [25]. A further
advantage of the method of effective Hamiltonians is not
requiring such artifacts.
Discussion.—As we can see in Fig. 2, the chaotic

propagation is markedly different from its integrable
approximation, which interpolates the chaotic regions in
phase space as if theywere regular (see Fig. 1). The quantum
coserf map, however, has an exact classical counterpart, so
that it is expected that replacing its true classically chaotic
orbits by integrable ones should result in at least some
degree of loss with respect to the exact dynamics. In
Fig. 3(a), quite contrary to intuition, the semiclassical
propagator employing the effective trajectories is shown
to be as accurate as its chaotic twin; in Fig. 3(b), however, we
see that it allows for the exploration of time regimes inwhich
the classical distribution propagated using chaotic trajecto-
ries has deformed into a stain, and its corresponding
semiclassical propagator performs poorly. The effective
trajectories, therefore, do not only establish a new con-
nection between quantum mechanics and classical integra-
bility, but also provide a valuablemethod to reach long times
in practical calculations.
A time threshold exists before which both semiclassical

approximation schemes are expected to be equivalent: This
is known in the field as the Ehrenfest time τE, defined as the
moment at which the classical and the quantum autocorre-
lation functions start to deviate [8,26]. The equivalence in
this short-time regime is expected because chaos has not yet
impacted classical propagation very strongly. In order to
make this discussion more quantitative, in Fig. 4(a) we
compare the absolute value of the autocorrelation function
jCN j ¼ jhz0; 0jz0; Nij for both semiclassical propagation
schemes with the exact quantum result. As we can see, the
autocorrelation based on effective trajectories fares remark-
ably well, especially if one considers that N ¼ 170 corre-
sponds to almost 9τE; the autocorrelation based on chaotic
trajectories, however, breaks down near 3τE. The approx-
imately 6000 trajectories used to obtain Fig. 4(a) were
enough when using the effective method, while for chaotic

propagation even 35 000 trajectories did not provide good
results for times longer than 3τE. Worse yet, adding a single
trajectory to the grid employed in chaotic propagation
drastically changes the final result. As a further means of
comparison, in Fig. 4(b) we display the discrete Fourier
transforms of the autocorrelations in panel 4(a), which
present intensity peaks at the eigenphases or eigenenergies
of a quantum system [2,25]. As we can see, the eigene-
nergies of the effective system accurately resolve even the
low-intensity eigenphases of the coserf map, while the
chaotic dynamics is seen to add spurious oscillations
between the approximate peaks.
The effective propagation, as expected, loses accuracy as

we increase the kicking strength, but its failure is generally
anteceded by the one of the propagation employing the exact
chaotic trajectories. The fact that quantum-chaotic evolution
could be better reproduced from an integrable Hamiltonian
also indicates that the latter’s quantization lies very close to
the exact quantum map, since the Herman-Kluk propagator
has been shown to be remarkably accurate for integrable
systems [9]. It is then expected that more aspects regarding
the quantization of classically chaotic systems can also be
obtained from chaos-freemethods.Althoughwe have used a
stroboscopicmap due to its visual appeal and exact quantum
evolution with which to compare semiclassical results, we
remark that there is no obstruction to employing the
formalism described here to continuous chaotic systems
in higher-dimensional phase spaces. The effective integrable
trajectories could then be obtained from, e.g., normal forms
[27,28] or other related methods. The semiclassical

FIG. 4. (a) Autocorrelation for the quantum propagation (solid
black) and its semiclassical approximations, obtained from the
effective (solid red) and the chaotic (dashed gray) trajectories.
Although N is discrete, we connect the points for ease of
visualization. The parameters are the same as in Fig. 2, and
the Ehrenfest time τE is near N ¼ 20. (b) The discrete Fourier
transform of the autocorrelation has peaks at the coserf map’s
eigenphases, expressed here in the units of the effective system’s
eigenenergies.
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propagator used, namely, Herman-Kluk’s, was chosen due
to its implementation ease and demonstrated reliability [9],
but plays no fundamental role and can also be substituted by
other methods (such as the one in Ref. [4]).
Conclusion.—We have shown that the quantummechani-

cal propagation of a coherent state whose classical analog
has a mixed phase space can be semiclassically approxi-
mated very accurately by substituting the original chaotic
trajectories with effective integrable ones. Besides sug-
gesting that chaos might be avoidable in reproducing
quantum evolution, the resulting effective semiclassical
approximation was seen to be even more accurate than
the original one for very long times, presenting itself as a
useful tool to access deep chaotic regimes.
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