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Langevin dynamics simulations are performed to investigate ejection dynamics of spherically confined
flexible polymers through a pore. By varying the chain length N and the initial volume fraction ϕ0 of the
monomers, two scaling behaviors for the ejection velocity v on the monomer number m in the cavity are
obtained: v ∼m1.25ϕ1.25

0 =N1.6 for largem and v ∼m−1.4 asm is small. A robust scaling theory is developed
by dividing the process into the confined and the nonconfined stages, and the dynamical equation is derived
via the study of energy dissipation. After trimming the prior stage related to the escape of the head
monomer across the pore, the evolution of m is shown to be well described by the scaling theory. The

ejection time exhibits two proper scaling behaviors: Nð2=3νÞþy1ϕ−ð2=3νÞ
0 and N2þy2 under the large and small

ϕ0 or N conditions, respectively, where y1 ¼ 1=3, y2 ¼ 1 − ν, and ν is the Flory exponent.

DOI: 10.1103/PhysRevLett.123.267801

Translocation of biopolymers via small pores is a very
important biological process; it allows exchange of large
biomolecules, such as DNA, RNA, and proteins, between
different cellular compartments [1]. When passing through
the pores, the conformation of biomolecules is significantly
changed in order to fit with the pores that have typically the
size of a few monomers. It creates a large entropic barrier
and therefore, driving forces such as the chemical potential
gradient are generally required to effectuate a translocation
[2–4]. In this study, we focus on a special type of driving:
polymer translocation induced by spatial confinement.
A vital example is the ejection of a DNA molecule from
a virus capsid to a bacteria cell [1,5]. Examples of appli-
cations in nanotechnology include trapping single DNA
in a nanocage on a membrane [6], transportation of DNA
between nanotraps [7], gene therapy using engineered
protein shells as the transfection vectors [8,9], and so on.
These topics require fundamental understanding of packing
or ejecting a biopolymer into or from a closed shell.
Muthukumar [10,11] has studied polymer ejection by

considering it as a nucleation problem, and predicted that

the ejection time scales as τ ∼ N1þð1=3νÞϕ−ð1=3νÞ
0 , where N is

the number of monomers, ϕ0 is the volume fraction (vf)
of the monomers prior to ejection, and ν is the Flory
exponent. Using the scaling theory and Monte Carlo
simulations, Cacciuto and Luijten (CL) [12,13] argued

that the ejection time should be τ ∼ N1þνϕ−1=ð3ν−1Þ
0 for a

polymer escaped from a spherical cavity. It was issued from
Kantor and Kardar’s expression τ ∼ N1þν=Δμ [14] by
setting the chemical potential difference Δμ to the esti-

mated free energy per monomer F=N ∼ ϕ1=ð3ν−1Þ
0 . The

exponent 1þ ν depicted a lower-bound timescale for the

polymer to diffuse unimpededly over its size. Sakaue and
Yoshinaga (SY) [15] pointed out that Δμ should decrease
with the process. They studied ejection dynamics by
balancing the free energy change with the dissipation of
the mechanical energy near the pore. The ejection time was

deduced to scale asymptotically as τ∼Nð2þνÞ=ð3νÞϕ−ð2þνÞ=ð3νÞ
0

at the osmotic driven stage.
Simulations, on the other hand, revealed that trans-

location behaviors can be altered by the details of the
escape pore [16,17], the cavity [18,19], the solvent [20,21],
the chain stiffness [19,22], etc. Despite the varieties,
universalities can be still traced. It is thus very important
to study the scaling physics underpinning the phenomena.
To have good knowledge on polymer ejection and resolve
the nonconsistency in the literature, we perform elaborate
numerical study in this Letter. In addition to the ejection
time, the variations of the ejection velocity and the
monomer number in the cavity during the process are
attentively studied. It permits us to rederive the dynamic
equation and reveals various astonishing scaling behaviors.
We apply molecular dynamics simulations [23] to study

polymer ejection from a spherical cavity through a small
pore to an open semispace. The polymer is modeled by a
bead-spring chain, where the connectivity between beads
is described by a harmonic potential with the spring
constant kb ¼ 600kBT=σ2 and the equilibrium bond length
b0 ¼ 1.0σ. The excluded volume of the beads is modeled
by the Weeks-Chandler-Andersen potential [24] with the
parameters εm ¼ 1.2kBT and σm ¼ 1.0σ. Here kB is the
Boltzmann constant and the temperature T is controlled by
Langevin thermostat. To shorten the notation, the units of
all the physical quantities reported latter will not be given
in supposing that m (the mass of a monomer), σ, and kBT
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are the three basic units of mass, length, and energy,
respectively.
We first pump a chain into a cavity and equilibrate the

system by constraining the head monomer at the pore
entrance as shown in Fig. 1(a). The monomer-cavity wall
interaction is modeled by a repulsive Lennard-Jones 9-3
potential with the parameters ðεw; σwÞ ¼ ð3.0; 1.0Þ, cut at
rc ¼

ffiffiffiffiffiffiffiffi
2=56

p
. Various chain lengths, ranging from N ¼ 16

to 1024, are investigated. By varying the cavity diameter
Dc, we are able to study ejection processes at different
initial vf, ϕ0 ¼ Nðσ=DÞ3, where D ¼ Dc − 0.5 is the
effective cavity diameter after subtracting the wall thick-
ness. The value of ϕ0 is varied from 0.4 down to 0.4 × 2−13.
The special case ϕ0 ¼ 0 is studied too, which has an
infinite D value and corresponds to a translocation through
a flat membrane. The effective pore diameter d is set to
1.5 and the pore length l is 1.25.
An ejection process is started by removing the constraint

of the head monomer. To obstruct falling of the head
monomer into the cavity, particularly when ϕ0 is small, a
wall potential is set at the pore entrance, which acts only on
the head monomer and reflects it to the outside. We run
simulations at different pairs of parameter (N, D). For each
pair, five hundred independent ejection events are studied.
Snapshots of simulation are illustrated in Fig. 1.
We first study the variation of the mean ejection time τ vs

the initial vf ϕ0 under the fixed chain length condition
in Fig. 2(a). When ϕ0 is large, τ scales approximately as

ϕ−1.11
0 . It is close to CL’s result ϕ−1=ð3ν−1Þ

0 [13]. However,
detailed derivation given later shows that the exponent
should be asymptotically −ð2=3νÞ. Our simulations go
further to investigate the small ϕ0 behavior and clearly
show that the curves are leveled off to a limiting value
which is the time required for the polymer to translocate
across a flat wall.
The variation of τ vs N under the fixed ϕ0 condition is

studied in Fig. 2(b). The cases with large ϕ0, 0.4, and 0.2,
show good scaling behaviors N1.48, which looks close to
the SY’s prediction Nð2þνÞ=ð3νÞ [15]. At smaller ϕ0, the
scaling dependence is not well kept. For example, the
exponent changes gradually from 1.58 to 2.04 as N
increases at null ϕ0.
To understand the details, the dynamics of ejection is

studied. We calculate the mean ejection velocity v by taking

the reciprocal of the mean dwelling time, and the results are
plotted in Fig. 3(a) against the number m of the monomers
in the cavity. Two characteristic scalings are discovered.
First, the velocity profile behaves roughly as m1.25 when m
is large. With decreasingm below a thresholdm�, v turns to
show a second scalingm−1.4. Noticeably,m� depends on ϕ0

and the curves are merged together as m < m� to follow a
common tread. Further analysis shows that the velocity
profiles at the large m section can be collapsed by
multiplying ϕ−1.25

0 under the fixed N condition, as given
in Fig. 3(b). For varied N, Fig. 3(c) shows that the curves
fall on a line at a fixed large ϕ0 and m > m� if v is scaled
by N1.6. The results depict two scaling behaviors for
the ejection dynamics: v ∼m1.25ϕ1.25

0 =N1.6 as m > m� and
v ∼m−1.4 as m < m�.
Based on the simulations, we develop a scaling theory.

An ejection process can be separated into two stages. At the

FIG. 1. Snapshots of simulation for N ¼ 512 at ϕ0 ¼ 0.2 at
(a) the starting point, and (b) 30% of the ejection process.
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FIG. 2. (a) Mean ejection time τ vs the initial volume fraction
ϕ0 at fixed chain lengths. The N values are given in the legend.
(b) τ vs N at fixed ϕ0. The values of ϕ0 can be read in the figure.
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FIG. 3. (a) Mean ejection velocity v as a function of the number
m of the monomers in the cavity for different ϕ0 values where
N ¼ 512. (b) v × ϕ−1.25

0 as a function ofm at N ¼ 512. The value
of ϕ0 can be read in the legend (a). (c) v × N1.6 vs m with ϕ0

being fixed at 0.4.
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first stage (called the confined stage), the instantaneous vf of
monomer in the cavity ϕ ¼ mðσ=DÞ3 is larger than the
overlap vf ϕ�. The second stage is the nonconfined stage,
occurring when ϕ becomes smaller than ϕ�. At the sepa-
ration, the threshold m� satisfies the condition D ∼ σmν�. It
gives ϕ� ∼ ðD=σÞ−1=ðzνÞ, where z ¼ ½1=ð3ν − 1Þ�.
At the first stage, the chain portion in the cavity

constitutes a semidilute solution and builds up excluded
volume correlations of length scale ξ (the blob size).
Assume that a blob comprises g monomers. The space-
filling conditions, ξ ∼ σgν and gðσ=ξÞ3 ∼ ϕ, yield
g ∼m−zðD=σÞ3z. The free energy is thus given by
FðmÞ ∼ kBTm=g. Balance the rate of the free energy
change, dF=dt, with the dissipation rate of energy at the
pore, −ηv2. The dynamic equation of ejection is deduced,
ðdm=dtÞ ∼ −ð1=ΔtÞfmz=½ðD=σÞ3z�g. Here η is the friction
coefficient, v ¼ −½ðσdmÞ=dt� the ejection velocity, and
Δt ¼ ½ðησ2Þ=ðkBTÞ� the timescale of monomer diffusion.
For ν ¼ 0.6, the equation depicts an m-scaling behavior
with the exponent z ¼ 1.25, consistent with the results of
Fig. 3. Substitute ðD=σÞ3 with N=ϕ0. An elimination of the
scaling dependence of v on ϕ0 can be done by multiplying
ϕ−z
0 , as having been shown in Fig. 3(b). However, the

dependence on N at fixed ϕ0 can be only removed by
multiplying N1.6, not by Nz, following the result of Fig. 3
(c). It suggests the existence of an extra scaling on N in the
equation. We conjecture that η scales additionally withN as
η0Ny1 , where y1 ≃ 0.35. The origin of this dependence can
be attributed to a combination effect of the cavity-to-pore
space reduction and the crowding of the monomers from
the trans side. It slows down the process and as a
consequence, a longer chain acquires a smaller velocity
when reaching at a state m if D is fixed. The velocity
scaling now reads as

v ∼
σ

Δt0
mz

Ny1ðD=σÞ3z : ð1Þ

The second stage is commenced by m < m� where the
chain segments become dilute in the cavity. The free energy
is about FðmÞ ≃ kBT½ð1 − γ0iÞ lnmþ ð1 − γ0oÞ lnðN −mÞ�−
mΔμio, where γ0i and γ0o describe the scaling of the partition
function for a tethered chain inside and outside the cavity,
respectively, and Δμio is the chemical potential difference
per monomer [2,10,25,26]. With the help of the rate
balance, we obtain ðdm=dtÞ ≃ ð−1=ΔtÞf½ð1 − γ0iÞ=m�−
½ð1 − γ0oÞ=ðN −mÞ� − ½Δμio=ðkBTÞ�g. Figure 3(a) has
revealed an astonishing result that v is not sensitive to
ϕ0 as m < m� and follows a universal tread of scaling. It
indicates that the Δμio term is not important. Moreover, the
term related to 1=ðN −mÞ can be omitted too because N is
much larger than m. The discrepancy on the resulting
exponent for m, −1, with the simulation, −1.4, further
suggests that the energy dissipation does not come from the
sole monomer at the pore. The displacing motion of the

monomers in the cavity should also participate in the
dissipation. The effect can be accounted through a scaling
on the effective friction coefficient η ∼ η0my2 . As a result,
the velocity at this stage is described by

v ∼
σ

Δt0
m−ð1þy2Þ; ð2Þ

with the exponent y2 being about 0.4.
We solve mðtÞ by integrating the two velocity equations

at the three boundary conditions: mð0Þ ¼ N, mðτ1Þ ¼ m�,
and mðτ1 þ τ2Þ ¼ 0. Two asymptotic behaviors are
obtained. At the beginning of the ejection,

m
N
≃
�
1þ t

t0

�
−ζ1

; ð3Þ

and near the end of the ejection,

m
N
≃
�
1 −

t
τ1 þ τ2

�
ζ2
; ð4Þ

where ζ1 ¼ ½1=ðz − 1Þ�, ζ2 ¼ ½1=ð2þ y2Þ�, and t0 ¼
½ðN1þy1ϕ−z

0 Δt0Þ=ðz − 1Þ�. We remark that the confined
stage is not always involved in an ejection process.
When ϕ0 < ϕ�

0 ∼ N−1=z, the pervaded space of the entire
chain is smaller than the cavity. The system is processed
only through the nonconfined stage.
The total ejection time is calculated. For the case with

fixed chain length, τ1 þ τ2 varies with ϕ0 as

Δt0
2þy2

N2þy2 ; ϕ0 ≤ ϕ�
0

Δt0Ny1

z−1

h�
N
ϕ0

� 2
3ν − N

ϕz
0

i
þ Δt0

2þy2

�
N
ϕ0

�2þy2
3ν ; ϕ0 > ϕ�

0:
ð5Þ

If N is varied and ϕ0 is fixed, the resulting expression is the
same but the conditions ϕ0 ≤ ϕ�

0 and ϕ0 > ϕ�
0 are replaced

byN ≤ N� andN > N�, respectively, whereN� ∼ ϕ−z
0 . The

results show that the ejection time is a sum of several terms
if the confined stage is involved. For large N and ϕ0, the

dominated term is Nð2=3νÞþy1ϕ−ð2=3νÞ
0 . By taking ν ¼ 0.6

and y1 ¼ 0.35, the ejection time has the scalingN1.46ϕ−1.11
0 .

This is exactly what we have observed in Figs. 2(a)
and 2(b), when both ϕ0 and N are large. Equation (5) also
predicts the leveling off of the ejection time to a value
around N2þy2 as ϕ0 < ϕ�

0 under the fixed-N condition.
However, discrepancy is found with the simulations. The
predicted N2.4 behavior (by setting y2 ¼ 0.4) is not clearly
seen in Fig. 2(b). For example, the exponent changed
gradually from 1.58 to 2.04 at ϕ0 ¼ 0. Could it be a result
of a strong finite-size effect of the chain length?
To answer the question, we investigate the evolution of

the mean monomer number in the cavity. The normalized
variations, m=N vs t=τ, for various ϕ0 at N ¼ 512 are
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plotted in Fig. 4(a). The curves exhibit a plateau structure at
the beginning of the process and change to show smooth
decreasing some moments later. The smaller the initial vf,
the wider the plateau. We found that the changing point
occurred at the moment when the head monomer left the
pore, i.e., at m ¼ N − 2 in this study. And the time spent in
the plateau region can be as long as 45% of the total
ejection time, as shown in the figure, and this is evidently
not negligible. It turns out clearly that there exists a stage,
prior to the confined or the nonconfined stages, for the head
monomer to find a way out of the pore. The time spent in
this stage is denoted by τ0. Therefore, the total ejection time
is τ ¼ τ0 þ τ1 þ τ2.
We trim the prior stage, and plot m=N vs t0=ðτ1 þ τ2Þ in

Fig. 4(b), where t0 ¼ t − τ0. We are now at the position
to examine the asymptotic behavior given by Eq. (3).
The variation curve for ϕ0 ¼ 0.4 was fit by using the
Levenberg-Marquardt method [27], with ζ1 set to 4.0 and t0
being the fitting parameter. The fitting curve has been
plotted in the dash-dotted line. Good agreement with the
data is found. To verify Eq. (4), we chose the extreme case
ϕ0 ¼ 0.0 by setting ζ2 ¼ 2.4−1 ≃ 0.417 and plotted the
equation in the dotted line. The consistency is satisfactory
as m is small. Therefore, the dynamics of ejection after
the prior stage can be well described by the pictures of the
two-stage model.
We further decompose the ejection time into two

components, τ0 and τ1 þ τ2, and study their variations
against N in Fig. 5. We find that τ0 follows two scaling
behaviors. At large ϕ0 such as 0.2, the exponent is about
0.33. Decreasing ϕ0 slows down the process and moves
upward the τ0 curves in a parallel way. Notably, τ0 has an
upper bound occurring at null ϕ0. At the bound, it follows a
second scaling with the exponent equal to 1.61. Thus,
the curves are deflected gradually to the larger scaling if
N < N� is met, as seen in the figure.

We remark that the prior stage does not appear at
ϕ0 ¼ 0.4. It is because the value is larger than the vf
inside the pore, estimated by ϕp ¼ 1

6
πσ3=ð1

4
πd2σÞ ≃ 0.296.

The ejection thus started in an imminent way, driven by the
osmotic pressure difference from the cavity. For the cases
with ϕ0 < ϕp, the head monomer needs to overcome an
energy barrier when crossing the pore. We have verified that
the prior time grows exponentially with the pore length l. It
showed that the prior stage is, in fact, a Kramers escape
problem and τ0 is described by η exp½ðΔμcplÞ=ðkBTσÞ�,
whereΔμcp is the chemical potential difference between the
cis and the pore region [28,29]. At large ϕ0 such as 0.2,
the cavity-to-pore space shrinkage imposes an N scaling on
the friction coefficient with y1 ¼ 1=3. Consequently, τ0
scales as N1=3, consistent with the observations. For
ϕ0 < ϕ�

0, the effective friction of the chain can be shown
proportional to N times a factor Nν which accounts
for the slowing down due to the spatial reduction in trans-
porting the chain coil from the cis region into the pore. It
explains the small-ϕ0 behavior with a scaling exponent
equal to 1þ ν. In this situation, the solution is dilute and the
m monomers on the cis side participate in the energy
dissipation with a displacing velocity of about v=mν. The
dissipation rate ηv2 is thus replaced bymðη0mνÞðv=mνÞ2. It
gives y2 ¼ 1 − ν.
Figure 5(b) shows τ1 þ τ2 vs N at various ϕ0. Compared

with the total ejection time in Fig. 2(b), the scaling behavior
becomes neater. The exponent is 1.48 at ϕ0 ¼ 0.4 and the
curves upshiftwith decreasingϕ0 in a parallelway in the log-
log plot. Similar to τ0, the upshifted curves are bent
to follow a second scaling N2.36 when N < N�. The results
are consistent with the prediction of Eq. (5) where the
dominated scaling switches from ð2=3νÞ þ y1 to 2þ y2 asN
decreases.We have also examined the decomposition of τ vs
ϕ0. Neater scaling results consistentwith the predictionwere
observed. Since τ0 is small at large ϕ0, the τ1 þ τ2 curve
retains the scaling exponent−ð2=3νÞ. The exponent changes
to 0 as ϕ0 < ϕ�

0, similar to the behavior in Fig. 2(a).
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FIG. 4. (a) m=N vs t=τ and (b) m=N vs t0=ðτ1 þ τ2Þ, for N ¼
512 at different ϕ0. The value of ϕ0 can be read in the legend. t0
and τ1 þ τ2 are, respectively, the elapsed time and the ejection
time after trimming off the prior stage.
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FIG. 5. (a) τ0 vs N and (b) τ1 þ τ2 vs N, at different ϕ0. The
values of ϕ0 can be read in the legend of (b).
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It is now clear that an ejection process comprises mainly
three stages: the prior stage, the confined stage, and the
nonconfined stage. The above study has shown that the
contribution from the prior stage is significant and can
affect the scaling calculations for the total ejection time.
This might explain why nonconsistent scaling results were
obtained in the literature [3,4,11–13,15]. After trimming
the prior stage, we obtained the proper ejection scalings:

τ ∼ Nð2=3νÞþy1ϕ−ð2=3νÞ
0 for ϕ0 > ϕ�

0 or N > N� and N2þy2

for ϕ0 < ϕ�
0 or N < N�, where y1 ¼ 1=3 and y2 ¼ 1 − ν. A

robust scaling theory has been developed. The ejection
dynamics, including the evolution of the velocity and the
number of monomers in the cavity, support the physical
pictures depicted by the theory.
A number of open questions can be studied in the future.

Notably, a comprehensive understanding of the velocity
profile will be helpful. For example, the velocity curve is
somewhat bent up at the confined stage. It can be attributed to
the virial coefficient effect in the osmotic pressure due from
the highly concentrated polymer solutions [30]. Packing or
ejecting a chain depends very much on the bending rigidity.
How thevelocity profile and scaling classes are altered by the
chain rigidity is urgent to be known. The current work treated
the problem without considering hydrodynamic interaction.
This topic is expected to play a significant role and the
influences on the ejection velocity should be understood.
Nevertheless, a simple and clear theory has been provided in
this Letter to explain the essential processes of the escape
dynamics for confined polymers.
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