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Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode
to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact,
host a single helical mode along screw or edge dislocations (including step edges) in the absence of weak
topological indices. When this occurs, the helical mode is necessarily bound to a dislocation characterized
by a fractional Burgers vector, macroscopically detected by the existence of a stacking fault. The robustness
of a helical mode on a partial defect is demonstrated by an adiabatic transformation that restores translation
symmetry in the stacking fault. We present two examples of HOTIs, one intrinsic and one extrinsic, that
show helical modes at partial dislocations. Since partial defects and stacking faults are commonplace in
bulk crystals, the existence of such helical modes can measurably affect the expected conductivity in these
materials.
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Introduction.—Topological insulators (TI) with weak
indices [1–3] have the distinctive property of hosting single
one-dimensional (1D) helical modes on line dislocations
[4–6]. These topological modes can be regarded as more
robust than the helical surface states of a weak topological
insulator (WTI) because they do not require translation
symmetry for protection [4,5,7]. Thus, they are a valuable
tool to identify and probe the physics of WTIs exper-
imentally [8–10]. Beyond WTIs, the existence of protected
gapless modes localized on topological defects generalizes
to band insulators in other dimensions and symmetry
classes [5,11–15], as well as to topological band insulators
protected by crystal symmetry [16–22].
Partial dislocations—those whose Burgers vector is a

fraction of a lattice translation—fall outside of the topo-
logical classification: because partial dislocations are nec-
essarily accompanied by a stacking fault plane, they are
locally detectable arbitrarily far away from the dislocation
line and, thus, do not constitute a topological defect.
However, as we show in the Letter, partial dislocations
can host topologically protected gapless modes. Since
multiple partial dislocations can combine to form a full
dislocation, consistency with the classification in Ref. [5]
provides conditions under which a partial dislocation can
exhibit a gapless topological mode.
We find that the existence of topological modes on

partial defects is intimately related to the recently predicted
higher-order topological insulators (HOTIs) [23–40].
HOTIs of order d in D spatial dimensions are characterized
by gapless topological modes on their D − d dimensional

edges. These gapless modes reside between ðD − dþ 1Þ-
dimensional surfaces that are gapped by mass terms of
different sign. If the mass term on either side of the (D − d)-
dimensional edge is forced to differ in sign because the
corresponding ðD − dþ 1Þ-dimensional surfaces are
related by symmetry, then the HOTI is intrinsic: its
topological edge mode cannot be removed without closing
the bulk gap or breaking crystal symmetry. In contrast, the
gapless (D − d)-dimensional edge modes of extrinsic
HOTIs can be removed while preserving the bulk gap
and crystal symmetry, by closing the surface gap [28].
HOTIs, like WTIs and topological crystalline insulators
[41,42], have a trivial bulk in the absence of crystal
symmetries.
In this Letter, we focus onD ¼ 3, d ¼ 2. We prove that a

system whose partial dislocations host a gapless topologi-
cal 1D mode must either have gapless surface states or
realize an intrinsic or extrinsic HOTI for some surface
termination. Focusing on symmetry class AII [43]—
although our results can be generalized—we present two
models of an intrinsic and an extrinsic second order
topological insulator, which have trivial weak indices,
but which realize gapless helical modes on partial screw
dislocations. Both models can be smoothly deformed to a
WTI by symmetrizing the Hamiltonian such that the unit
cell is halved. During this process, the bulk gap remain
open, while the surface gap closes; thus, the deformation of
the Hamiltonian is accompanied by an insulator-to-metal
surface phase transition. The existence of a partial Burgers
vector in a HOTI that can be elevated to a full lattice vector
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in a WTI without closing the bulk gap is a sufficient
condition to realize a helical mode on a partial dislocation.
More generally, we prove that a gapless helical mode on a
partial lattice dislocation is an unambiguous signature of
topology and that, in the reverse direction, for every HOTI
with gapless helical modes on its hinges, there exists a
lattice defect that exhibits a gapless helical mode.
The existence of helical modes bound to defects is a

valuable probe to experimentally detectHOTIs in caseswhere
the (D − d)-dimensional (hinge) modes are not visible.
Partial screw and edge dislocations.—A dislocation line

is characterized by a lattice vector B, the Burgers vector.
The dislocation breaks lattice translation symmetry, but
away from the line, translation symmetry is restored,
rendering the line dislocation locally invisible. Hence, a
line dislocation is a topological defect because it is only
detectable by a nonlocal probe: a loop around the line
dislocation can only be closed with an additional trans-
lation of B relative to the same loop without the defect.
When a dislocation terminates at a surface, it results in a
step edge, depicted in Fig. 1.
Edge and screw dislocations are distinguished by

whether B is perpendicular or parallel to the defect,
respectively. A general dislocation can be a combination.
In a crystalline system, topological defects are classified

by how the Bloch Hamiltonian winds as it is transported
around the defect [5]. In three-dimensional time-reversal
invariant systems with spin-orbit coupling (class AII), a line
defect is classified by a Z2 invariant, which indicates

whether it hosts a helical mode [5]. The Z2 invariant
corresponding to a dislocation described by B is deter-
mined completely by the weak indices of the Hamiltonian
[4]: it is nontrivial if

B ·Mν ¼ π mod 2π; ð1Þ

where the time-reversal invariant momentum Mν ¼
ðν1G1 þ ν2G2 þ ν3G3Þ=2 is determined by the weak topo-
logical indices ðν1; ν2; ν3Þ and the reciprocal lattice vectors
Gi [1–3].
Here, we consider topological helical modes at disloca-

tions that are characterized by a Burgers vector that is not a
lattice vector, which we denote by b. Such a defect is
referred to as a partial dislocation [44]. A partial disloca-
tion is always bound to a stacking fault—a 2D plane where
translation symmetry is broken—as shown in Fig. 1. Thus,
a partial dislocation is not a topological defect and,
consequently, Eq. (1) does not apply. In fact, we will show
that a system with trivial weak indices can host a single
gapless helical mode on a partial dislocation.
To gain insight into which partial dislocations can

host helical modes, we derive a general constraint by
combining multiple partials to form a full dislocation:
suppose b characterizes a partial dislocation that hosts h
gapless helical modes, and define n > 1 be the minimum
integer such that nb is a lattice vector. (The case n ¼ 2 is
depicted in Fig. 1.) Then consider the full dislocation
characterized by nb. This dislocation hosts nh mod 2
helical modes. Comparison with Eq. (1) requires

nb ·Mν ¼ nhπ mod 2π: ð2Þ

There are four cases: First, if n is even and nb ·Mν ¼ 0, then
any value of h satisfies Eq. (2); in particular, a system may
have trivial weak indices and yet host gapless helical modes
on partial defects. This is the case considered in the models
that follow. Second, if n is even and nb ·Mν ¼ π, then there
is no h ∈ Z that satisfies Eq. (2); hence, the stacking fault
that accompanies b must be gapless. Third, if n is odd and
nb ·Mν ¼ π, then hmust be odd and hence the partial screw
dislocation must host a gapless helical mode if the stacking
fault is gapped. Finally, if n is odd and nb ·Mν ¼ 0, then h
must be even: the partial defect cannot host a single gapless
helical mode. A look-up table summarizes these results in
the Supplemental Material, Sec. A [45].
Connection to HOTIs.—We now argue that a system that

realizes a helical mode on a partial dislocation is an
(extrinsic or intrinsic) HOTI or has gapless surface states.
This follows because a step edge can be deformed into a
“hinge” between two surfaces of a crystal, depicted in
Fig. 1(c) and shown numerically in the Supplemental
Material, Sec. B [45]. Specifically, if a helical mode exists
on a partial dislocation, then the same mode must exist on a
partial step edge where the dislocation terminates on a

(a)

(c)

(b)

FIG. 1. Full and partial dislocations with Burgers vectors B and
b, respectively; a and b indicate sublattice degrees of freedom in
the unit cell. B is a lattice translation, while b is not. The
dislocations are either (a) edge dislocations or (b) screw dis-
locations. A full dislocation is locally invisible away from its
core. In contrast, a partial dislocation is attached to a 2D stacking
fault (gray plane). This partial dislocation can host a helical
mode, indicated by a black line and double arrow. (c) Adiabatic
deformation of the lattice, taking the stacking fault into the
surface. The helical mode localized at a screw dislocation mode
can be moved into the hinge.
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surface. The partial step edge can be turned into a hinge by
adding or removing atoms until it reaches the edge of
the crystal. Because the topological protection of the helical
mode only depends on time-reversal symmetry, it will be
robust to this deformation provided it does not encounter
another gapless mode, either on the hinge (in which
case the material is already a HOTI) or on the side surface.
Thus, this construction yields a surface termination with a
gapless helical mode; hence, it is a HOTI. However,
the existence of the helical mode on a partial dislocation
does not depend on the surface termination; it is a bulk
characteristic.
In the reverse direction, given a HOTI with gapped

surfaces (which excludes a WTI) and gapless helical modes
on its hinges, a defect with a gapless helical mode can be
engineered by “stacking” in real space multiple copies so
that an external hinge mode becomes an internal defect and
translation is broken across the stacking plane. Depending
on the spatial embedding of the degrees of freedom in the
HOTI, this defect may be a partial dislocation; it cannot be
a full dislocation (otherwise, it would be a WTI). If the
Hamiltonian can be smoothly deformed to preserve trans-
lation symmetry across the stacking plane, then the defect
was necessarily a partial dislocation and the deformed
system is a WTI with a helical mode on a full dislocation.
Models.—We present two models of 3D HOTIs, char-

acterized by a gapped bulk and gapped surfaces, but
gapless helical modes along one-dimensional edges.
They are both “doubled” models, constructed from two
interpenetrating sublattices that separately realize a topo-
logical phase (either a weak or strong TI), but combined the
system has trivial weak and strong indices. Both models
can be continuously deformed to a WTI without closing the
bulk gap by turning off the intersublattice coupling, which
halves the unit cell. When the sublattices are coupled, they
have trivial weak (and strong) indices, but nonetheless host
gapless helical modes on certain partial screw dislocations.
In Supplemental Material, Sec. C [45], we prove that the
helical modes are required by computing the nontrivial Z2

invariant of the stacking fault.
Extrinsic HOTI.—We start with a WTI constructed from

2D quantum spin Hall (QSH) layers stacked evenly with
spacing ẑ. We add a perturbation that alternates the
coupling between adjacent layers, doubling the unit cell
without closing the bulk gap; this is a generalization of the
Su-Schrieffer-Heeger chain [49]. Terminating the system
between strongly coupled layers will reveal 1D helical
modes along its hinges, while terminating between weakly
coupled layers yields gapped hinges. This model comprises
an extrinsic HOTI [28], since the presence or absence of
helical hinge modes depends on the surface termination.
Consequently, the extrinsic HOTI is not symmetry indi-
cated [20,50]: the quantum numbers associated with wave
functions at high-symmetry points in the Brillouin zone do
not yield a bulk topological invariant.

We consider the first quantized Hamiltonian HðkÞ ¼
H0ðkÞμ0 þHδðkÞ, where k labels the crystal momentum,
σz and τz the spin and orbital degrees of freedom, and μz a
sublattice index labeling the two inequivalent sites in the
dimerized unit cell. We define

H0ðkÞ ¼ MðkÞτz − Aðsin kxσx − sin kyσyÞτx; ð3Þ

with MðkÞ¼M−Bð4−2coskx−2coskyÞ and 0 < M < 4B,
which describes a 2D TI in each layer, and

HδðkzÞ¼ ½ðt−δÞμy− ðtþδÞðcoskzμy− sinkzμxÞ�σzτx; ð4Þ

which couples the layers in a dimerized fashion. When
δ ¼ 0,H describes a WTI with indices (0;001) and a lattice
translation of ẑ. Away from this fine-tuned point, when
δ ≠ 0, but δ is much smaller than the bulk gap, the system
remains adiabatically connected to aWTI, but its unit cell is
doubled and, consequently, its Z2 indices are trivial,
(0;000). The new cell causes the Brillouin zone to fold;
hence, when δ ≠ 0, the gapless surfaces of the WTI
(at δ ¼ 0) become gapped. Furthermore, when δ ≠ 0, the
system can be terminated such that two gapless helical
modes reside along its top and bottom edges [Fig. 2(a)];
thus, it is an extrinsic HOTI.
When δ ¼ 0, a screw dislocation that connects two

adjacent layers (B ¼ ẑ) is a full dislocation that hosts a
helical mode according to Eq. (1). When δ ≠ 0, the helical
mode remains (its topological protection does not rely on
translation symmetry), but since ẑ is not a lattice vector, the
dislocation is partial. Hence, this model has trivial weak
indices and a helical mode along a partial dislocation.
Using the Kwant code [51], we have numerically

implemented this model on a finite size sample of 203

sites, setting M ¼ 2, A ¼ B ¼ 1, t ¼ 0.3, and δ ¼ 0.2.
Figure 2(a) shows the helical modes on the top and bottom
surfaces. Figure 2(b) shows the partial screw dislocation
with b ¼ ẑ, confirming that the gapless helical mode is
bound to the dislocation core as well as to step edges that
emanate from it. (See Supplemental Material, Sec. D [45]

(a) (b) (c) (d)

FIG. 2. HOTIs with screw dislocations. (a) Hinge modes of the
extrinsic HOTI [Eqs. (3) and (4)]. (b) The extrinsic HOTI with a
single partial screw dislocation. (c) Hinge modes of the intrinsic
inversion-protected HOTI [Eqs. (5) and (6)]. (d) The intrinsic
HOTI with a single partial screw dislocation. In all panels, the
real-space probability distribution is averaged over the eight
states closest to E ¼ 0. Larger circles and darker colors corre-
spond to larger probability densities.
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for band structure.) Our numerical simulation shows a
surface termination realizing the extrinsic HOTI phase.
However, since the helical mode is a bulk feature, it will
reside on the screw dislocation regardless of the surface
termination.
Intrinsic HOTI.—Our second model consists of two

coupled strong 3D TIs, one on each of the two sublattices
(labeled a and b). Each 3D TI is described by

H0ðkÞ ¼ MðkÞτz þ Aðsin kxσzτx − sin kyτy þ sin kzσxτxÞ;
ð5Þ

where MðkÞ ¼ M − Bð6 − 2 cos kx − 2 cos ky − 2 cos kzÞ.
H0ðkÞ obeys time-reversal symmetry, T ¼ iσyK, where
K is complex conjugation, and inversion symmetry,
P ¼ τz. We consider the regime 0 < M < 4B, where there
is one occupied Kramers pair (at Γ) with negative inversion
eigenvalues.
We now introduce a sublattice degree of freedom,

indexed by μz. The Hamiltonian H0ðkÞμ0 describes two
(uncoupled) 3D TIs. This model was introduced as the
“double strong TI” (DSTI) [31], without specifying the
spatial embedding of the sublattices. Here, we offset the b
sublattice half a unit cell in the ẑ direction. This shift
preserves the inversion center about the origin. It also
introduces a translation symmetry by ẑ=2, denoted tẑ=2,
which exchanges the two sublattices. The extra translation
symmetry causes the Brillouin zone to unfold so that the
two band inversions are now located at Γ and Z≡ ð0; 0; πÞ.
Consequently, H0ðkÞμ0 describes a WTI with indices
(0; 001).
We add a perturbation that breaks tẑ=2 down to tẑ and

gaps all surfaces:

HδðkÞ ¼ m sin
kz
2
σyτxμx þ δ cos

kz
2
ðσxτz þ σyτ0Þμy: ð6Þ

The first term preserves tẑ=2 symmetry, but gaps the surface
Dirac cones (one from each sublattice) on the ẑ-normal
surface. The second term breaks tẑ=2 symmetry and thus
gaps the Dirac cones on the x̂- and ŷ-normal surfaces; in an
electronic system, this can emerge from a charge density
wave or a Jahn-Teller distortion. Thus, HðkÞ ¼ H0ðkÞμ0 þ
HδðkÞ has a gapped bulk and surfaces. Its Z2 indices are
trivial, (0; 000). However, the inversion eigenvalues of the
occupied bands yield a nontrivial HOTI index of 2 mod 4
[31]. This model realizes an intrinsic HOTI: a finite sample
realizes a single helical mode that cannot be removed
without breaking inversion symmetry. (If inversion sym-
metry is broken, the helical mode will persist provided all
bulk and surface gaps remain open.)
We now insert partial screw dislocation with b ¼ ẑ=2.

When m ¼ δ ¼ 0 and tẑ=2 symmetry is preserved, this is a
full dislocation that hosts a single helical mode according to
Eq. (1). When m, δ ≠ 0, the dislocation is partial, but as

long asHδðkÞ does not close the bulk gap, the helical mode
must survive. Thus, we have provided an example of an
intrinsic HOTI in which a partial screw dislocation hosts a
gapless helical mode, while the bulk has trivial Z2 indices.
We numerically implemented this model on a finite size

sample of 20 × 20 × 19 sites, with M ¼ 2, A ¼ B ¼ 1,
m ¼ 2, and δ ¼ 0.5. Figure 2(c) shows the single helical
mode that traverses an inversion-symmetric path across the
hinges. Figure 2(d) shows the partial screw dislocation with
b ¼ ẑ=2, which hosts a gapless helical mode along the
dislocation as well as on the step edges on the top and
bottom surfaces. (See Supplemental Material, Sec. D [45]
for band structure.)
Edge dislocations.—Because screw and edge disloca-

tions can be deformed into each other, edge dislocations in
HOTIs can also realize gapless helical modes, which we
demonstrate in the Supplemental Material, Sec. E [45].
Measurement.—Partial lattice defects are ubiquitous in

crystals [44]. Their presence can be detected by a surface
step edge, whose height reveals whether it is partial or full.
The density of states on the step edge can be measured via
scanning tunneling spectroscopy (STS), as has been dem-
onstrated for several topological materials [30,52–61].
Recently, 1T 0-MoTe2 and 1T 0-WTe2 were predicted to

be intrinsic HOTIs [62]. The latter is unstable in bulk form;
however, STS reveals topological edge modes on single-
layer 1T 0-WTe2 [58,59]. Since the bulk unit cell contains
two such layers, a single-layer step edge is a partial
dislocation; thus, the measurement is consistent with our
analysis. While bismuth [30] and SnTe [24] have also been
predicted to be intrinsic HOTIs and zero bias peaks have
been measured on full step edges in both materials
[30,52,54], they fall outside of the scope of our work
because neither can be adiabatically connected to a WTI.
We propose a candidate extrinsicHOTI, Bi13Pt3I7, which

consists of dimerized 2D TI layers [53], similar to the
extrinsic HOTI model considered in this Letter. Consistent
with trivial weak topological indices, STS measurements
revealed that full step edges are gapped [53]; partial step
edges were not studied. We predict that a partial step edge
in Bi13Pt3I7 hosts a gapless helical mode.
Helical modes on dislocations can also be measured by

their effect on conductivity [9,10].
Discussion.—Our work is a first step in the analysis of

partial lattice defects in topological phases. Partial dis-
locations fall outside the scope of Eq. (1). Nonetheless, we
have shown that when a partial Burgers vector can be
continuously deformed to a lattice vector by restoring a
translation symmetry, the partial dislocation becomes a full
dislocation that can host a gapless helical mode subject to
the constraint of Eq. (1). We have shown that helical modes
on partial dislocation lines can be used to experimentally
detect HOTIs since they provide a sufficient condition for
higher order topology. Furthermore, in every HOTI it is
possible to construct a defect with a gapless helical mode.
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There are many possible future directions. The analysis
will generalize beyond class AII. Furthermore, a bulk
invariant that captures both the intrinsic and extrinsic
HOTI models remains an open question; recent progress
has been made in Ref. [63]. We show in Supplemental
Material, Sec. C [45] that the low-energy theory of the
stacking fault can be regarded as an embedded 2D
topological insulator. Hence, the entanglement diagnosis
in Ref. [46] could potentially identify partial lattice defects
that host topological modes in more general models.
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