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We present a method to characterize non-Abelian anyons that is based only on static measurements and
that does not rely on any form of interference. For geometries where the anyonic statistics can be revealed
by rigid rotations of the anyons, we link this property to the angular momentum of the initial state. We test
our method on the paradigmatic example of the Moore-Read state that is known to support excitations with
non-Abelian statistics of Ising type. As an example, we reveal the presence of different fusion channels for
two such excitations, a defining feature of non-Abelian anyons. This is obtained by measuring density-
profile properties, like the mean square radius of the system or the depletion generated by the anyons. Our
study paves the way to novel methods for characterizing non-Abelian anyons, both in the experimental and
theoretical domains.
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Introduction.—The standard classification of particles
into bosons and fermions breaks down in two spatial
dimensions, where exotic objects known as anyons can
exist [1–6]. The key concepts for defining the statistics of
anyons are the adiabatic motion of one anyon around
another, hereafter the braiding, and the adiabatic exchange
of the anyons positions [7]. Anyons can be characterized by
merging two of them, and the properties of the new
composite object depend on the fusion rules of the original
anyons. When there is the possibility of fusing in more than
one way, anyons can be non-Abelian [8–11]: they are the
heart of topological quantum computation [12], and their
experimental realization is thus highly desired. Several
existing platforms are expected to host them as emergent
quasiparticles, but the unambiguous experimental demon-
stration of their properties is still the matter of an intense
debate [13,14].
In the last twenty years, several works addressed the

problem of extracting the properties of the anyons hosted
by the ground states of a given Hamiltonian. The simplest
approach relies on explicitly following the ground-state
evolution when anyons are exchanged [15–19]. Within
other approaches, the analytical study of paradigmatic
wave functions has also clarified important issues about
the statistics of excitations [10,20,21]. On the experimental
side, interferometric schemes have been proposed to
compare the state before and after the adiabatic time
evolution [15,22–26], but none of them has produced
unambiguous results [27,28].
We propose a method to characterize non-Abelian any-

ons: By considering geometries where the anyonic statistics
can be revealed through rigid rotations of the anyons (see
Fig. 1), we relate their statistical phase to the angular

momentum and to the density profile of the system. This
protocol allows one to identify the existence of different
fusion channels, a defining property of non-Abelian any-
ons, with remarkable experimental simplicity in the context
of ultracold atoms [29,30] and photons [31,32]. Moreover,
our study represents a powerful theoretical tool to inspect
excitations with unknown statistics, going beyond the
observation of multiple fusion channels. As a showcase
study, we discuss our method for the case of the Moore-
Read (MR) state [8], and outline an experimental procedure
for computing the statistical phases of its quasiholes.
Rigid rotations of the anyons.—We consider a two-

dimensional (2D) system of N particles (bosons or fer-
mions) supporting anyonic excitations. The Hamiltonian
Ĥ1 is a function of particle positions and momenta, as well
as of time. We use the complex coordinate notation zj ¼
xj þ iyj for the position of the jth particle. The time
dependence of Ĥ1(∂zj ; ∂ z̄j ; zj; z̄j; t) is only due to a set of
parameters ημ(t) defining the centers of some external local
potentials Vext(z; ημðtÞ). These potentials typically couple

(a) (b) (c)

FIG. 1. [(a)–(c)] Rigid rotations of two anyons [panels (a) and
(b)] or four anyons [panels (c)]. Rotation angles are such that the
set of anyonic coordinates (red dots) remains the same.
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with the particle density, creating and pinning the anyons at
positions ημ(t) [15,33–36].
To reveal the anyonic statistics, one option is to braid the

anyons through rigid rotations of the pinning-potential
coordinates (see Fig. 1). These transformations are
defined as

ημðtÞ ¼ ημð0ÞeiθðtÞ; θðtÞ ¼ t
T
θf; ð1Þ

where θf is the final rotation angle and T is the time
duration of the process.
Since we consider rigid rotations, we can study the

problem in the reference frame R2 corotating with the
anyons, rather than using the laboratory reference frame R1.
We assume that Vext(z; ημðtÞ) is a function of the distance
jz − ημðtÞj between particles and anyons, and that the
remaining terms in Ĥ1 are rotationally invariant. Under
these assumptions, the generator of the time evolution in R2

in the time span [0,T] reads [29]

Ĥ2ð∂zj ; ∂ z̄j ; zj; z̄j; tÞ ¼ Ĥ1ð∂zj ; ∂ z̄j ; zj; z̄j; t ¼ 0Þ − θf
T
L̂z;

ð2Þ

which is manifestly time independent. The first term on the
right-hand side is the initial Hamiltonian in R1, while the
second one describes the effect of the rotation. Being
interested in an adiabatic process, we consider T → ∞. The
rotation term is then a small contribution and can be treated
perturbatively.
To describe the dynamics in R2, we consider an initial

state jΨ0i belonging to the m-fold degenerate ground-state
manifold HE0

, spanned by the basis fjψαigα¼1;…;m, with
Ĥ1ðt¼0Þjψαi¼E0jψαi and hψαjψβi¼δαβ. If the dynamics
is slow enough, we can use the adiabatic theorem to state
that the dynamics is restricted to HE0

(an explicit proof is
in [37]), and make the following ansatz:

jΨ2ðtÞi¼ e−iE0t=ℏ
Xm
α¼1

γαðtÞjψαi; γαð0Þ¼ hψαjΨ0i: ð3Þ

By applying the Schrödinger equation, we recover the time-
evolution equation of the γα’s,

iℏ
dγαðtÞ
dt

¼ −
θf
T

Xm
β¼1

LαβγβðtÞ; ð4Þ

where Lαβ ¼ hψαjL̂zjψβi is the angular momentum
restricted to HE0

. The solution reads

jΨ2ðTÞi ¼ e−iĤ2T=ℏjΨ0i ¼ e−iE0T=ℏeiθfL=ℏjΨ0i; ð5Þ

in terms of the matrix exponential exp ½iθfL=ℏ�.

To find the state jΨ1ðTÞi in the laboratory frame, we
need to rotate jΨ2ðTÞi by an angle θf,

jΨ1ðTÞi ¼ e−iθfL̂z=ℏjΨ2ðTÞi
¼ e−iE0T=ℏe−iθfL̂z=ℏeiθfL=ℏjΨ0i: ð6Þ

The state in Eq. (6) is the exact result for an adiabatic
braiding process performed through a rigid rotation of all
anyons by an angle θf. We recognize a dynamical phase
proportional to T that is unessential to the discussion of
non-Abelian statistics and therefore neglected from now on.
The remaining geometric contribution is the product
of two unitary matrices: B, with matrix elements Bαβ ¼
hψαje−iθfL̂z=ℏjψβi, and UB ≡ eiθfL=ℏ, which is the Berry
matrix of the adiabatic process under study, once one
makes a suitable choice of the basis states for each angle
θðtÞ [37].
To guarantee that the ground-state manifold is HE0

at
both times [12], the angle θf must be such that Ĥ1ðtÞ is the
same at times t ¼ 0 and T. Depending on the anyon
positions, this constraint can be satisfied even for rotation
angles that are not multiples of 2π [see Figs. 1(b)–1(c)].
When θf ¼ 2πk, with k integer, B is trivially the identity
matrix. In this case, UB encodes the full geometrical
contribution to the time evolution, made up of both
topological and nontopological parts. We stress that UB
only depends on measurable properties of the ground-state
manifold at the initial time, namely, the angular-momentum
matrix elements. Therefore, no actual time evolution is
needed to measure it, which constitutes an undeniable
experimental advantage. The case of θf ≠ 2πk is relevant in
the theoretical context, where—in contrast with experi-
mental studies—nothing precludes the extraction of B (see
an example in Ref. [37]). A comprehensive analysis of this
case is left for a future work.
Moore-Read state and its quasihole excitations.—We

now consider the MR state, which is described by the wave
function [8]

ΨðfzjgÞ ¼ PfðWÞ
Y
i<j

ðzi − zjÞMe−
P

i
jzij2=4l2B ; ð7Þ

where lB is the magnetic length. PfðWÞ denotes the Pfaffian
of theN×N antisymmetric matrixW, withWij¼1=ðzi−zjÞ
for i ≠ j. For even (odd) values of the positive integer M,
this wave function represents a fermionic (bosonic) frac-
tional quantum hall (FQH) state at filling ν ¼ 1=M, which
belongs to the lowest Landau level (LLL) [7]. This state is
the ground state for 2D charged particles, in the presence of
a transverse magnetic field and of a specific three-body
repulsion [50], and it is believed to be in the same
universality class of the FQH state observed at filling
ν ¼ 5=2 [51–53].
In the presence of properly designed external potentials,

the ground state may also host a specific number of
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localized anyonic excitations [34–36]. The quasihole (QH)
excitations of the MR state obey non-Abelian statistics
[8,12,20]. In particular, they are Ising anyons with an
additional Abelian contribution to their statistical phase,
and they can fuse in two different ways. For a given
set of coordinates ðη1;…; η2nÞ of 2n such QHs, there is a
2n−1-fold degenerate set of states [20].
In the following, we consider the case 2n ¼ 2, for which

the system is not degenerate. In this case, the MR wave
function Ψ2QH has the same form as in Eq. (7); yet the
antisymmetric matrix W depends on the even or odd parity
PN ¼ 0, 1 of the particle number N. For PN ¼ 0, it is
N × N and reads

Wij ¼
ðη1 − ziÞðη2 − zjÞ þ ði ↔ jÞ

zi − zj
∀ i ≠ j: ð8Þ

For PN ¼ 1, on the other hand, W is a ðN þ 1Þ × ðN þ 1Þ
matrix. The N × N upper-left block is defined as in Eq. (8),
while the entries of the (N þ 1)th row (column) are equal to
þ1 (−1) [37].
The fusion channel of the two QHs depends on PN [21].

As a consequence, the braiding of two MR QHs induces a
phase φbr that depends on PN ,

φbr

2π
¼ 1

4M
−
1

8
þ PN

2
: ð9Þ

The dependence of the braiding phase φbr on PN is thus a
direct indication of the non-Abelian statistics of QHs,
because it indicates that the two QHs are in different
fusion channels when N is even or odd [12].
φbr from the mean square radius.—As previously

mentioned, for a 2π-rotation of the QHs, B is the identity
matrix. For the nondegenerate MR state with two QHs, the
unitary transformation UðTÞ associated with this process
reduces to the phase factor UB ¼ eiφB, where φB ¼ 2πL=ℏ
is the Berry phase. In this case, L is the expectation value of
the angular-momentum operator over the initial state, hL̂zi.
The Berry phase φB has a nontopological contribution,

which can be interpreted as an Aharonov-Bohm phase [37].
Although this phase factor contains information on the QH
fractional charge, we have to remove it to isolate the QH
braiding phase φbr. To this purpose we consider the
difference between the Berry phases for two particular
states [see Figs. 2(a) and 2(b)],

φbr

2π
¼ 1

ℏ
½hL̂zijη1j¼jη2j − hL̂ziη1¼η2

�: ð10Þ

(a) (c) (e)

(b) (d) (f)

FIG. 2. (a) 2D density profile of the N ¼ 150 M ¼ 2 Moore-Read state with quasiholes at positions η1 ¼ 10lB and η2 ¼ 10ei3π=2lB
(red dots). (b) 2D density profile of the N ¼ 150M ¼ 2Moore-Read state with quasiholes at positions η1 ¼ η2 ¼ 10lB. Red circles give
a pictorial representation of the regions A1 and A2 where the 2D densities depicted in (a) and (b) are different. (c) Radial profile of the
density depletions caused by a single quasihole at η1 ¼ 0 (circles) and two quasiholes on top of each other at η1 ¼ η2 ¼ 0 (diamonds),
for even (blue solid lines) and odd (orange dashed lines) parity of N, at filling ν ¼ 1=M ¼ 1=2. We consider N ¼ 200 or N ¼ 199.
(d) Quasihole braiding phase evaluated with Eq. (13) as a function of the cutoff radius Rmax, for both PN ¼ 0 (blue solid line) and
PN ¼ 1 (orange dashed line) in the M ¼ 2 fermionic case. Black dashed lines denote the predictions for φbr [see Eq. (9)]. [(e) and (f)]
Same as (c) and (d) for the M ¼ 1 bosonic case.
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The expectation value hL̂zijη1j¼jη2j is taken on a state with
QHs sufficiently far from each other, at positions η1 and η2
such that jη1j ¼ jη2j. On the other hand, hL̂ziη1¼η2

is
measured on the state with the two QHs on top of each
other at η1 ¼ η2 (for details, see Ref. [37]).
The mean angular momentum of a state in the LLL is

related to its mean square radius, hL̂zi=ℏþ N ¼ Nhr2i=2l2B
[44,54]. This simplifies Eq. (10), which reads

φbr

2π
¼ N

2l2B
½hr2ijη1j¼jη2j − hr2iη1¼η2

�: ð11Þ

Moreover, within the LLL approximation, the mean square
radius of the cloud, and so φbr, can be measured after time-
of-flight expansion [44,55].
To validate Eq. (11), we compute hr2i through the

Monte Carlo technique [37]. Numerical results, reported
in Table I for both M ¼ 2 (fermionic case) and M ¼ 1
(bosonic case) and for different parities PN of the particle
number N, are fully compatible with Eq. (9). This dem-
onstrates that the existence of multiple fusion channels for
the MR QHs can be experimentally probed without braid-
ing them.
φbr from the quasihole density depletions.—Although

the protocol suggested in Eq. (11) is already close to the
current experimental capabilities, it requires the ability to
pin QHs with high precision and knowledge of the particle
number. Moreover, φbr is difficult to compute for large
systems, since it is a Oð1Þ number obtained as the differ-
ence between twoOðN2Þ quantities. However, Eq. (11) can
be recast in a form that depends neither on N nor on the
precise QH positions, as we prove in the following.
Because of the incompressibility of the FQH states [7],
the densities of the configurations under study only differ in
the regions A1 and A2 surrounding the QHs [see red circles
in Figs. 2(a) and 2(b)]. Therefore, the integrals in Eq. (11)
can be restricted to A1 and A2,

φbr

2π
¼ 1

2l2B

Z
A1;A2

r2½njη1j¼jη2jðr⃗Þ − nη1¼η2ðr⃗Þ�dr⃗: ð12Þ

In these regions, the densities in Eq. (12) can be expressed
in terms of the density depletions d1QH and d2QH caused by
a single QH and two overlapping QHs [37]. This allows us
to write the braiding phase as

φbr

2π
¼ 1

2l2B

Z
dρ⃗ρ2½d2QHðρ⃗Þ − 2d1QHðρ⃗Þ�; ð13Þ

in which ρ⃗ is the distance from a QH position, d1QHðρ⃗Þ ¼
nB − njη1j¼jη2jðρ⃗þ ηiÞ and d2QHðρ⃗Þ ¼ nB − nη1¼η2ðρ⃗þ ηiÞ
are the aforementioned QH density depletions, with respect
to the bulk density nB ¼ 1=2πMl2B [see Figs. 2(c) and 2(e)].
The integration region must be large enough to ensure an
appropriate decay of the density oscillations induced by the
QHs. At the same time, a cutoff ρ < Rmax is needed to
avoid spurious contributions coming from the density
deformations generated at the cloud boundaries. The
numerical validation of Eq. (13) is shown in Figs. 2(d)
and 2(f) for the different parities PN , and for M ¼ 2, 1.
Residual deviations from the expected φbr are due to finite-
size effects.
Equation (13) constitutes an operative way to measure

φbr, which depends only on local properties in the bulk
region. As such, it is robust against edge modes, which are
the typical low-energy excitations due to finite-temperature
effects [33,56]. Moreover, since d1QHðρÞ does not depend
on PN [see Figs. 2(c) and 2(e)], all the information on the
fusion channels is encoded in d2QHðρÞ, which is completely
different for even and odd values of N. Although this
dependence on PN was already known [36,39], the key
result of our work is that the depletion profiles also contain
quantitative information on the braiding phase. Note that
this result holds for the QH excitations of any state in
the LLL.
Experimental procedure.—While d1QHðρÞ can be indif-

ferently measured in the ground state with either a single
QH or two well-separated ones [34,35], the characterization
of two overlapping QHs involves more subtleties: First, the
state in Eq. (8) with overlapping QHs may not be the
ground state in the presence of a given external potential.
For instance, for odd parity PN, having two QHs close to
each other might cost more energy than just exciting a low-
energy fermionic excitation at the boundary [34,49,57].
Furthermore, the presence of these fermionic edge modes
may modify the relation between the QHs fusion channel
and the particle number parity PN (see footnote [33]
in Ref. [35]).
We thus propose to proceed as follows for the measure-

ment of d2QHðρÞ: two QHs are created far apart, by cooling
the system in the presence of pinning potentials. The two
QHs are then slowly brought closer and fused [37].
According to the general theory of topological quantum
computation [12,58], the fusion channel cannot change
during this process, so the system is adiabatically trans-
ported into the (possibly metastable) desired state, where

TABLE I. Quasihole braiding phase φMC
br obtained numerically

via Eq. (11) (third column, with the Monte Carlo statistical
uncertainty) and its prediction φbr in Eq. (9) (fourth column), for
M ¼ 2, 1 and for different parities PN of the particle number
N ¼ 150 and N ¼ 149. For the jη1j ¼ jη2j term in Eq. (11), we
set η1 ¼ −η2, which is the optimal configuration for a finite-size
system. For theM ¼ 2 (M ¼ 1) case, jη1j=lB is equal to 7.5 (6.5).

M PN φMC
br ½2π� φbr ½2π�

2 (fermions) 0 0.05� 0.06 0
1 0.49� 0.07 0.5

1 (bosons) 0 0.13� 0.04 0.125
1 0.59� 0.04 0.625
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the depletion profile d2QHðρÞ is measured. Note that unless
special care is taken, we can argue that in an actual
experiment the QH fusion channel is randomly chosen at
each repetition [37]. Nonetheless, the non-Abelian statistics
of the QHs are still visible in the bipeaked probability for
φbr. A rigorous proof of this statement requires numerical
experiments based on a model Hamiltonian and a particular
cooling mechanism; we leave it for a future study.
Conclusions and outlook.—In this work, we presented a

scheme to assess the statistical properties of anyonic
excitations that does not rely on any kind of interference.
Our protocol is based on a mathematical link between
statistics and angular-momentum measurements, derived
by considering rigid rotations of the anyons. This relation
further simplifies for states in the LLL, where anyonic
statistics is encoded in the density profile. Having access to
the anyonic statistics without performing any interference
scheme is remarkable in itself; moreover, relating statistics
to density measurements makes our protocol readily
applicable to state-of-the-art experiments with ultracold
atoms [30] and photons [32].
Beyond the identification of the Moore-Read fusion

channels, on which our scheme has been validated, the
study of the two-anyons case opens several other perspec-
tives. For example, our method can be employed to
distinguish the Moore-Read and anti-Pfaffian states, whose
quasiholes have different Abelian contributions to the
braiding phase [59–64]. Moreover, it gives access to a
key property in topological quantum computation [12,58],
namely, the dependence of the braiding phase on the
distance between the anyons [17].
Our method can also be useful for theoretical studies of

states supporting anyons of unknown type. When one can
compute the matrix elements of the angular-momentum and
rotation operators in the ground-state manifold, our scheme
gives access to all contributions to the time-evolution
operator, for any rigid rotation of the anyons. We stress
that in the case of non-Abelian anyons rigid rotations are
sufficient to induce nontrivial mixing of the ground states
[12], although only a subset of the possible anyonic
exchanges is accessible in this way [37]. Therefore, we
envision the possibility of a more precise theoretical
characterization of the anyons, beyond the present identi-
fication of fusion channels.
Natural extensions of our analysis include other states in

the LLL—like the Read-Rezayi state [11]—or the p-wave
superconductor, closely related to the Moore-Read state
[9]. An exciting question is whether the link between the
anyonic statistics and the system density remains valid also
for lattice systems [18,65–68]; this is the subject of ongoing
study [69].
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