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We investigate the effects of disorder on a periodically driven one-dimensional model displaying
quantized topological transport. We show that, while instantaneous eigenstates are necessarily Anderson
localized, the periodic driving plays a fundamental role in delocalizing Floquet states over the whole
system, henceforth allowing for a steady-state nearly quantized current. Remarkably, this is linked to a
localization-delocalization transition in the Floquet states at strong disorder, which occurs for periodic
driving corresponding to a nontrivial loop in the parameter space. As a consequence, the Floquet spectrum
becomes continuous in the delocalized phase, in contrast with a pure-point instantaneous spectrum.

DOI: 10.1103/PhysRevLett.123.266601

Introduction.—Thouless pumping [1,2] provides one of
the simplestmanifestations of topology in quantum systems,
and has attracted a lot of recent interest, both theoretically
[3–11] and experimentally [12–17]. Since the seminalworks
by Thouless and Niu [1,2], it has been argued that the
quantization of the pumped charge is robust against weak
disorder, but a clear characterization of the localization
properties of the relevant states, and the breakdown of
quantized transport at strong disorder, is still missing.
Thouless pumping is also the first example of a topo-

logical phase emerging in a periodically driven system with
no static analogue. Such phases have been the subject of
many recent proposals [4,6,8,18–22]. In this respect,
understanding the role of disorder has a twofold purpose:
on one hand, it is important to understand the robustness to
disorder of the topology of driven systems [17,23] per se;
on the other hand, localization properties in the topological
phase are relevant for the possibility of stabilizing topo-
logical pumping in interacting systems [24,25] by means of
many-body localization [26,27].
Restricting ourselves to the noninteracting case, a puz-

zling aspect regards the nature of the Floquet states. While
quantized transport over a single period of the driving is
expected at a small disorder [2], its robustness over many
driving cycles is not trivial, since it would imply the
existence of extended Floquet states. But in the adiabatic
limit, where charge is strictly quantized, Floquet states for a
generic driving should coincide with the Hamiltonian
eigenstates, which are Anderson localized in 1D. So, how
can Thouless pumping in Anderson insulators be stable in
the long-time limit? Previous studies of periodically driven

1DAnderson insulators in the low-frequency regime [28,29]
have found a generic increase of the localization length of
Floquet states compared to the static case, without any
evidence of truly extended states nor a clear link between the
localization properties and topology.
In this Letter, we address these questions by inquiring the

effects of disorder on Thouless pumping from the point of
view of Floquet theory. We focus on the finite-size scaling
of the localization length of Floquet states, the long-time
dynamics and the winding of Floquet quasienergies, and
show that Thouless pumping is associated to extended
Floquet states. Remarkably, as disorder increases these
states undergo a true delocalization-localization transition
at a critical disorder strengthWc, which reflects itself in the
breakdown of quantized transport. Crucially, topology
plays a fundamental role in the existence of such extended
states and on the character of the phase transition, as we
prove by explicit comparison with the case of a trivial
adiabatic driving protocol.
Model.—We consider a disordered version of the driven

Rice-Mele model [30]. For a system of spinless fermions on
a chain of L ¼ 2N sites, with ĉ†j creating a fermion on the
jth site, the Hamiltonian reads

ĤðtÞ ¼ −
XN
j¼1

½J1ðtÞĉ†2j−1ĉ2j þ J2ðtÞĉ†2jĉ2jþ1 þ H:c:�

−
XL
l¼1

½ð−1ÞlΔðtÞ þWζl�ĉ†lĉl: ð1Þ

Here J1ð2ÞðtÞ and ΔðtÞ describe hopping amplitudes and on
site energies for the clean model, while Wζl describes the
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on site disorder of strength W, with ζl ∈ ½− 1
2
; 1
2
� uniformly

distributed random numbers. We assume periodic boundary
conditions. In absence of disorder, W ¼ 0, and for generic
J1ð2Þ and Δ, the instantaneous spectrum is split in two
bands, separated by a gap. Thus, at half filling, the charge
pumped in one period is equal in the adiabatic limit to the
Chern number of the occupied band [1]. This integer
is different from 0 when the driving is topologically
nontrivial, e.g., when the path in the space ðJ1 − J2;ΔÞ
encloses the gapless point (0,0).
To characterize the topological phase we compute the

average number of particles pumped over an infinite
number of periods [7,31]

Q̄ ¼ lim
M→∞

1

M

Z
Mτ

0

dthΨðtÞjĴðtÞjΨðtÞi; ð2Þ

from the quantum-average of the current density operator
ĴðtÞ [1,32]. Here, τ ¼ 2π=ω is the driving period, and the
system is initially prepared in the N-particle ground state
jΨ0i of Ĥðt ¼ 0Þ.
Since the Hamiltonian is time periodic, we can exploit

the Floquet representation [35] of the evolution operator
Ûðt; 0Þ ¼ P

ν e
−iEνt=ℏjΦνðtÞihΦνð0Þj, where jΦνðtÞi ¼

jΦνðtþ τÞi are N-particle Floquet modes and Eν are the
many-body quasienergies. Q̄ can be computed directly in
the Floquet diagonal ensemble [7,36]:

Q̄ ¼ Qd ¼
X
ν

N ν

Z
τ

0

dthΦνðtÞjĴðtÞjΦνðtÞi; ð3Þ

whereN ν ¼ jhΨ0jΦνð0Þij2 is the occupation number of the
νth Floquet state. For noninteracting fermions, it suffices
to know the single-particle (SP) Floquet states jϕαðtÞi and
their occupation number nα to explicitly calculate the
diagonal pumped charge [7,31].
Results.—Figure 1 shows the disorder average ½Qd�av,

computed with Eq. (3), as a function of the disorder
strength W, in a topological driving cycle with J1ð2ÞðtÞ ¼
J0 � δ0 cosðωtÞ, and ΔðtÞ ¼ Δ0 sinðωtÞ. Observe that
topological pumping persists for sufficiently small
W ≲ 3J0. The regime of large W ≳ 8J0 is also rather clear:
Qd ¼ 0. The intermediate region W=J0 ≈ 4 shows large
sample-to-sample fluctuations: the inset shows that the
drop of ½Qd�av starts when disorder closes the instantaneous
gap ΛN ≡mint∈½0;τ�½ENþ1ðtÞ − ENðtÞ�, where ENðtÞ is the
N-particle ground state energy at time t.
To understand why quantized transport survives in spite

of the instantaneous eigenstates being Anderson localized
[37], we now show that, crucially, a significant fraction of
the SP Floquet states remain delocalized even for very low
frequency, due to a driving-induced mixing of localized
states [28,29]. We analyzed localization-delocalization of
states through the real-space inverse participation ratio

(IPR) [38] of the single-particle Floquet modes jϕαð0Þi,
IPRα ¼

P
l jhljϕαð0Þij4, with jli ¼ ĉ†l j0i being a particle

localized at site l. For a finite system IPRα ∈ ½L−1; 1�,
where IPRα ∼ L−1 signals a completely delocalized (plane-
wave-like) state, while IPRα ¼ 1 corresponds to a perfect
localization on a single site. Figure 2(a) shows the
distribution of IPRs of Floquet states for three values of
the disorder strengthW. Notice the presence of a very sharp
peak in the IPR distribution which we find to scale as
IPRα ∼ L−1 for W=J0 ¼ 2 and 4, suggesting that the mode
of the IPR distribution corresponds to extended states [39].
We find, however, that very similar distributions (not
shown) would emerge—for the same disorder strength—
when the driving protocol is topologically trivial.
To better analyze the size dependence of the IPR

peak, and its correlation with the topology of the driving,
we estimate a characteristic localization length for
a chain of size L from the inverse of the peak’s position
in the IPR distribution (inverse of the mode), ξ̄LðWÞ ¼
fargmax½PðIPRαÞ�g−1. Figures 2(b) and 2(c) show the size-
scaling of ξ̄LðWÞ for a trivial and topological driving,
respectively. When the driving is trivial, our data suggest
that ξ̄LðWÞ scales as W−β with β ≃ 2.5 for a large W, see
Fig. 2(b), while it saturates to the system size at ∼L when
W is small. Hence we can extract a crossover disorder
strength W� ∼ L−1=β separating these two regimes, vanish-
ing in the thermodynamic limit: here truly extended
Floquet states appear only at zero disorder. By rescaling
the data, we see a very good collapse of ξ̄LðWÞ=L vs L1=βW
[Fig. 2(b), inset]. On the other hand, when the driving is
topological, the same phenomenology holds with a
finite critical disorder strength Wc [Fig. 2(c)]: For
W > Wc ≃ 3.5J0, we observe that ξ̄LðWÞ ∼ ðW −WcÞ−β,
with β ≃ 2, while again the localization length saturates
to L when W < Wc, thus indicating the presence of an
actual localization-delocalization phase transition. The
critical exponent is in good agreement with bosonization

FIG. 1. Disorder average of the diagonal pumped charge plotted
against disorder strength. The transition between the quantized
charge regime and the trivial one Qd ¼ 0 is linked to the closing
of the minimum energy gap due to the disorder, shown in the
inset, as highlighted by the vertical dashed line.
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calculations [40], while the value of Wc extracted by our
scaling analysis is compatible with the breaking of quan-
tization in Fig. 1.
To understand the mechanism behind the delocalization-

localization transition, we study the relation between the
time-averaged energy of the SP Floquet states hEiα ¼
1
τ

R
τ
0 dthϕαðtÞjĤðtÞjϕαðtÞi and the corresponding IPRα

(Fig. 3). For weak disorder, extended states carrying charge
in the positive (negative) direction lays in the middle of the
lower (higher) band, while localized ones stay closer to
the edges.
Floquet states from different bands are separated in

energy by a gap—closely related to the instantaneous
energy gap—and by a mobility edge. The presence of
localized states at the band edges suggests that the driving-
induced mixing occurs mainly at the band center, as long as
W ≲Wc (see left inset of Fig. 3, with W ¼ 3.5J0). This
implies an additional robustness against nonadiabatic
effects—indeed, we observe that our results do not depend
on the precise value of ω [32], even when the gap is almost
completely closed. When W ≫ Wc the two bands merge
into a single one where extended states transporting
opposite charges hybridize into localized states (see right
inset with W ¼ 8J0), and the current stops flowing.
This phenomenology is similar towhat happens in integer

quantum Hall effect (IQHE) in 2D systems, where there
must be spectral regions of extended states [41–43], in order
to have a nonzero quantized transverse conductivity. Also
the exponent β ≃ 2, found forW > Wc, is in good agreement
with a similar scaling analysis performed on the density of
extended states in IQHE in a disordered sample [44]. Even
though the parallelism between the physics of clean 1D
topological charge pumping and 2D integer quantum
Hall effect is well established [2,45,46], at the best of our
knowledge this is the first time where a localization-
delocalization transition in a one-dimensional driven

Anderson insulator is associated to topological properties,
as it happens in IQHE [42,43].
Winding of quasienergies.—In a clean system, quantized

pumping corresponds to a nontrivial winding of the
quasienergy of the occupied Floquet bands in k space
[4,7,31,47,48]. When translational invariance is broken, a
common procedure is to introduce a phase twist θ ∈ ½0; 2πÞ
between site 1 and site L and then take the average of Qd
over θ [2,4]. This operation is justified because when the
state projector is exponentially localized, the dependence of
observables on the twisted boundary decays exponentially
with L [49]. Equation (3) can then be equivalently written
as [32]

Qd ¼
Z

2π

0

dθ
2π

QdðθÞ ¼
τ

ℏ

X
ν

Z
2π

0

dθ
2π

N νðθÞ∂θEνðθÞ: ð4Þ

(a) (b) (c)

FIG. 2. (a) Disorder averaged IPR distribution of SP Floquet states for several values of W and L ¼ 280. The inset shows the sharp
peaks almost superimposed at small IPR for W ¼ 2J0 and W ¼ 4J0. (b) Characteristic localization length ξ̄LðWÞ as a function of
disorder, for a trivial driving cycle [J1 ¼ 4J0 þ δ0 sinðωtÞ]. The inset shows the collapse obtained by ξ̄L → ξ̄L=L andW → WL1=β, with
β ≃ 2.5. (c) Characteristic localization length when the system exhibits topological transport [J1 ¼ J0 þ δ0 sinðωtÞ]. The inset shows the
collapse ξ̄L → ξ̄L=L and W → ðW −WcÞL1=β, with Wc ≃ 3.5J0 and β ≃ 2. The parameters used in the simulation are δ0 ¼ 0.5J0,
Δ0 ¼ 1.5J0, ℏω ¼ 0.01J0.

FIG. 3. IPRα vs the time-averaged energy of the corresponding
Floquet state hEiα. The dashed lines indicates the value 1=L
associated to extended states; the data refer to several realizations
of a chain with 200 sites and disorder strength W ¼ 2J0. In the
insets the same data are shown for a larger disorder. Qd ¼ �1 is
the charge transported when a single band is completely filled.
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Here Eν ¼ ϵα1 þ � � � þ ϵαN is the N particle quasienergy
associated to the Floquet state jΦνi given by a Slater
determinant of the SP states jϕα1i;…; jϕαN i; N ν ¼
jhΨ0jΦνij2 is the occupation number. In this context, the
winding number is the number of times that EνðθÞ wraps
around the first Floquet-Brillouin zone as θ goes from 0 to
2π. Besides nonadiabatic corrections that depend on the
initial state jΨ0i [7,50], Qd is quantized when a single
many-body Floquet state is occupied, e.g., N ν ≃ δ0;ν
independently of θ, and that state has a nontrivial winding
number. Henceforth we focus on the Floquet state with the
lowest initial energy jΦ0ðθÞi, computed as the Slater
determinant of the N SP Floquet states with highest
projection on the ground state in which the state is initially
prepared.
We report in Fig. 4(a) E0ðθÞ in the first Floquet-Brillouin

zone for three different disorder strengthsW=J0 ¼ 2, 4, and
8, which are, respectively, below, close to the transition
value, and above it. In Fig. 4(b) the SP quasienergy
spectrum is plotted with respect to W as θ spans the
interval ∈ ½0; 2πÞ, while Fig. 4(c) shows some details of
ϵαðθÞ that help to understand the localization transition. A
localized state is characterized by a quasienergy ϵα periodic
in θ, while extended ones with positive winding satisfy the
relation ϵαð2πÞ ¼ ϵαþ1ð0Þ. Hence we distinguish between
three situations. (i) W < Wc: jΦ0i coincides essentially
with jΨ0i (N ν ≃ δ0;ν), because adiabaticity is preserved at a
many-body level, and has winding number equal to 1, the
blue line in Fig. 4(a). The SP quasienergy spectrum is
continuous in θ and there are no gaps in the Floquet-
Brillouine zone, Fig. 4(b). Most of the SP states feel the
twist at the boundary, obey ϵαð2πÞ ¼ ϵαþ1ð0Þ and contrib-
ute to the winding of EðθÞ [upper panel of Fig. 4(c)].
(ii) W ≳Wc: the initial ground state jΨ0i has relevant
projections over many MB Floquet states and the SP
occupation numbers nα depend nontrivially on θ. Hence
the set α1;…; αN of SP Floquet states in the Slater

determinant jΦ0i, changes with θ, thus making E0ðθÞ
discontinuous [red dots in Fig. 4(a)]. Gaps start to appear
in the SP quasienergy spectrum [Fig. 4(b)], and the
occupation number itself depends nontrivially on θ. The
SP Floquet states with opposite transported charge start to
be mixed in pairs of localized states, with quasienergies
periodic in θ [lower panel of Fig. 4(c)]. (iii) W > Wc: both
SP Floquet states and Hamiltonian eigenstates are strongly
localized and there is no current. Again N ν ¼ δ0;ν, but the
winding number is trivial [green line in Fig. 4(a)] because
SP quasienergy spectrum has only a pure-point contribu-
tion and localization makes the system insensitive to the
boundary twist.
Conclusions.—We analyzed in detail the steady-state

current flowing in a one dimensional Floquet-Anderson
insulator: the topological periodic driving mixes localized
Hamiltonian eigenstates to give extended Floquet modes.
The dynamics is adiabatic only at a many-body level, but
not at the SP one, where driving-induced mixing of
localized states occurs even at very low frequencies.
Delocalization makes quantized pumping robust, until
extended Floquet states with opposite winding coalesce
for large disorder. Even though the physics of quantum
pumping in clean systems is the same of 2D IQHE, this
analogy is not trivial in the presence of disorder, since the
1D periodically driven chain would be mapped in an
extremely anisotropic disordered 2D model.
A subtle point emerges in the adiabatic limit ω → 0. In a

truly adiabatic evolution the SP, Floquet states would
coincide with the Hamiltonian eigenstates, thus being
localized, at least when the disorder-induced SP level
crossings are actually avoided crossings [51]. This happens
generally when one takes the adiabatic limit in a finite
system, where the energy levels are protected by finite
gaps, although exponentially small in L. Quantized pump-
ing still works because disorder induces resonances in the
spectrum, allowing for large distance tunneling [53,54].

(a) (b) (c)

FIG. 4. (a) Quasienergy E0ðθÞ of the many-body Floquet state with lowest energy. The winding is well defined only forW ¼ 2J0 and
W ¼ 8J0, when jΨ0i has a nonvanishing projection on a single MB Floquet state. (b) SP quasienergy spectrum for all possible angles θ
as a function of the disorder. (c) typical behaviors of SP ϵαðθÞ. When W < Wc most of the states are extended and sensitive to the
boundary condition (upper panel), while for W > Wc many quasienergies do not contribute to the winding, being periodic in θ (lower
panel). All data correspond to a single disordered chain of L ¼ 80 sites. The size of the dots is proportional to nαðθÞ.
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If the thermodynamic limit L → ∞ is taken first, the
spectrum becomes dense and the driving mixes SP levels
at an arbitrarily small frequency, leading again to a
quantized pumping. These arguments suggest that quan-
tized pumping is obtained regardless of which of the two
limits (ω → 0 or L → ∞) is taken first, although the
physical mechanisms are different.
Finally, we point out that the interplay between disorder,

topology (and possibly interaction) in Floquet systems
can be investigated in cold atom experiments, where
a disordered or quasiperiodic potential can be easily
engineered [55].

We wish to thank J. Asboth, M. Dalmonte, R. Fazio,
N. Lindner, A. Michelangeli, V. Ros, F. Surace, and
B. Trauzettel for valuable discussions. Research was partly
supported by EU H2020 under ERC-ULTRADISS, Grant
No. 834402. L. P. acknowledges financial support from the
DFG (SFB1170 “ToCoTronics”).

[1] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[2] Q. Niu and D. Thouless, J. Phys. A 17, 2453 (1984).
[3] C.-H. Chern, S. Onoda, S. Murakami, and N. Nagaosa,

Phys. Rev. B 76, 035334 (2007).
[4] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys.

Rev. B 82, 235114 (2010).
[5] J. Qin and H. Guo, Phys. Lett. A 380, 2317 (2016).
[6] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H.

Lindner, Phys. Rev. X 6, 021013 (2016).
[7] L. Privitera, A. Russomanno, R. Citro, and G. E. Santoro,

Phys. Rev. Lett. 120, 106601 (2018).
[8] M. H. Kolodrubetz, F. Nathan, S. Gazit, T. Morimoto, and

J. E. Moore, Phys. Rev. Lett. 120, 150601 (2018).
[9] M. Nakagawa, T. Yoshida, R. Peters, and N. Kawakami,

Phys. Rev. B 98, 115147 (2018).
[10] T. Haug, L. Amico, L.-C. Kwek, W. Munro, and V. Bastidas,

arXiv:1905.03807.
[11] L. Arceci, A. Russomanno, and G. E. Santoro, arXiv:

1905.08808.
[12] L. Lu, J. D. Joannopoulos, and M. Soljai, Nat. Photonics 8,

821 (2014).
[13] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,

and I. Bloch, Nat. Phys. 12, 350 (2016).
[14] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,

L. Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296
(2016).

[15] M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I.
Bloch, Nature (London) 553, 55 (2018).

[16] W. Ma, L. Zhou, Q. Zhang, M. Li, C. Cheng, J. Geng, X.
Rong, F. Shi, J. Gong, and J. Du, Phys. Rev. Lett. 120,
120501 (2018).

[17] I.HotzenGrinberg,M.Lin,C.Harris,W. A.Benalcazar,C.W.
Peterson, T. L. Hughes, and G. Bahl, arXiv:1905.02778.

[18] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys.
Rev. X 3, 031005 (2013).

[19] A. C. Potter, T. Morimoto, and A. Vishwanath, Phys. Rev. X
6, 041001 (2016).

[20] D. V. Else and C. Nayak, Phys. Rev. B 93, 201103(R)
(2016).

[21] J. C. Budich, Y. Hu, and P. Zoller, Phys. Rev. Lett. 118,
105302 (2017).

[22] I. Esin, M. S. Rudner, G. Refael, and N. H. Lindner, Phys.
Rev. B 97, 245401 (2018).

[23] O. Shtanko and R. Movassagh, Phys. Rev. Lett. 121, 126803
(2018).

[24] N. H. Lindner, E. Berg, and M. S. Rudner, Phys. Rev. X 7,
011018 (2017).

[25] T. Gulden, E. Berg, M. S. Rudner, and N. H. Lindner,
arXiv:1901.08385.

[26] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev.
Mod. Phys. 91, 021001 (2019).

[27] F. Harper, R. Roy, M. S. Rudner, and S. Sondhi, arXiv:
1905.01317.

[28] H. Hatami, C. Danieli, J. D. Bodyfelt, and S. Flach, Phys.
Rev. E 93, 062205 (2016).

[29] K. Agarwal, S. Ganeshan, and R. N. Bhatt, Phys. Rev. B 96,
014201 (2017).

[30] M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455
(1982).

[31] J. E. Avron and Z. Kons, J. Phys. A 32, 6097 (1999).
[32] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.266601 for details,
which includes Refs. [33,34].

[33] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 91,
155422 (2015).

[34] L. Privitera, Non-equilibrium aspects of topological Floquet
quantum systems, Ph.D. thesis, SISSA, 2017.

[35] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
[36] A. Russomanno, A. Silva, and G. E. Santoro, Phys. Rev.

Lett. 109, 257201 (2012).
[37] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[38] J. T. Edwards and D. J. Thouless, J. Phys. C 5, 807

(1972).
[39] Incidentally, the average IPR suggests a localized scenario,

as IPR ¼ ð1=LÞPα IPRα saturates to a finite value for
L → ∞.

[40] R. Citro, M. M. Wauters, L. Privitera, A. Russomanno, and
G. E. Santoro (to be published).

[41] S. M. G. Richard E. Prange, The Quantum Hall Effect,
2nd ed. Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1990).

[42] E. Prodan, T. L. Hughes, and B. A. Bernevig, Phys. Rev.
Lett. 105, 115501 (2010).

[43] E. Prodan, J. Phys. A 44, 113001 (2011).
[44] K. Yang and R. N. Bhatt, Phys. Rev. Lett. 76, 1316 (1996).
[45] J. E. Avron, D. Osadchy, and R. Seiler, Phys. Today 56,

No. 8, 38 (2003).
[46] I. Martin, G. Refael, and B. Halperin, Phys. Rev. X 7,

041008 (2017).
[47] W.-K. Shih and Q. Niu, Phys. Rev. B 50, 11902 (1994).
[48] R. Ferrari, Int. J. Mod. Phys. B 12, 1105 (1998).
[49] H. Watanabe, Phys. Rev. B 98, 155137 (2018).
[50] M.M. Wauters and G. E. Santoro, Phys. Rev. B 98, 205112

(2018).
[51] If disorder induces true level crossings in the occupied band

of the SP spectrum, as in the control freak limit [52], a fine

PHYSICAL REVIEW LETTERS 123, 266601 (2019)

266601-5

https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1103/PhysRevB.76.035334
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1016/j.physleta.2016.05.014
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevLett.120.106601
https://doi.org/10.1103/PhysRevLett.120.150601
https://doi.org/10.1103/PhysRevB.98.115147
https://arXiv.org/abs/1905.03807
https://arXiv.org/abs/1905.08808
https://arXiv.org/abs/1905.08808
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nphys3622
https://doi.org/10.1038/nature25000
https://doi.org/10.1103/PhysRevLett.120.120501
https://doi.org/10.1103/PhysRevLett.120.120501
https://arXiv.org/abs/1905.02778
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevLett.118.105302
https://doi.org/10.1103/PhysRevLett.118.105302
https://doi.org/10.1103/PhysRevB.97.245401
https://doi.org/10.1103/PhysRevB.97.245401
https://doi.org/10.1103/PhysRevLett.121.126803
https://doi.org/10.1103/PhysRevLett.121.126803
https://doi.org/10.1103/PhysRevX.7.011018
https://doi.org/10.1103/PhysRevX.7.011018
https://arXiv.org/abs/1901.08385
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://arXiv.org/abs/1905.01317
https://arXiv.org/abs/1905.01317
https://doi.org/10.1103/PhysRevE.93.062205
https://doi.org/10.1103/PhysRevE.93.062205
https://doi.org/10.1103/PhysRevB.96.014201
https://doi.org/10.1103/PhysRevB.96.014201
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1088/0305-4470/32/33/308
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.266601
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1103/PhysRevLett.109.257201
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1103/PhysRevLett.105.115501
https://doi.org/10.1103/PhysRevLett.105.115501
https://doi.org/10.1088/1751-8113/44/11/113001
https://doi.org/10.1103/PhysRevLett.76.1316
https://doi.org/10.1063/1.1611351
https://doi.org/10.1063/1.1611351
https://doi.org/10.1103/PhysRevX.7.041008
https://doi.org/10.1103/PhysRevX.7.041008
https://doi.org/10.1103/PhysRevB.50.11902
https://doi.org/10.1142/S0217979298000600
https://doi.org/10.1103/PhysRevB.98.155137
https://doi.org/10.1103/PhysRevB.98.205112
https://doi.org/10.1103/PhysRevB.98.205112


tuned driving is able to mix localized energy eigenstates into
extended Floquet states, even at a vanishing frequency.

[52] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators, Lecture Notes in Physics Vol. 919
(Springer, 2016).

[53] V. Khemani, R. Nandkishore, and S. L. Sondhi, Nat. Phys.
11, 560 (2015).

[54] M. Ippoliti and R. N. Bhatt, arXiv:1905.13171.
[55] P. Bordia, H. Lschen, U. Schneider, M. Knap, and I. Bloch,

Nat. Phys. 13, 460 (2017).

PHYSICAL REVIEW LETTERS 123, 266601 (2019)

266601-6

https://doi.org/10.1038/nphys3344
https://doi.org/10.1038/nphys3344
https://arXiv.org/abs/1905.13171
https://doi.org/10.1038/nphys4020

