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If a liquid is cooled rapidly to form a glass, its structural relaxation becomes retarded, producing a drastic
increase in viscosity. In two dimensions, strong long-wavelength fluctuations persist, even at low
temperature, making it difficult to evaluate the microscopic structural relaxation time. This Letter shows
that, in a 2D glass-forming liquid, relative displacement between neighbor particles yields a relaxation time
that grows in proportion to the viscosity. In addition to thermal elastic vibrations, hydrodynamic
fluctuations are found to affect the long-wavelength dynamics, yielding a logarithmically diverging
diffusivity in the long-time limit.
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In many two-dimensional ordering phenomena, fluctua-
tions at long wavelengths are so strong that perfect order is
destroyed. For example, the transition between a liquid and
a crystalline solid is continuous or nearly continuous [1–6].
Recently, large-scale molecular dynamics (MD) simula-
tions [7,8] and colloidal experiments [9,10] have revealed
that such long-wavelength fluctuations also exist in two-
dimensional (2D) liquids that are rapidly cooled toward the
glass transition. Although retaining a random amorphous
structure, elastic vibrations appear as the rigidity emerges
with the decrease in temperature. The excess of low-
frequency phonons in two dimensions [7,11] leads to an
elastic anomaly, where the amplitude of thermal vibrations
diverge at long wavelengths. Even in the presence of these
long-wavelength fluctuations, the microscopic structural
relaxations in 2D and 3D supercooled liquids appear to be
similar, once the effect of these fluctuations has been
eliminated by introducing quantities that characterize the
local switching between neighbor particles [7,9,10].
Albeit a similarity of structural relaxation modality

between 2D and 3D glass-forming liquids, it does not
mean that the transport properties, a key to the nature of
glass transitions, are similar in between. One problem lies
in the relationship between the structural relaxation time
and the viscosity. The glass transition is marked by a drastic
increase in macroscopic viscosity with decreasing temper-
ature, which is intimately related to the divergence of the
microscopic structural relaxation time. As such, theoretical
and computational studies have focused on the dynamical
mechanism of growth in the microscopic structural relax-
ation time, most typically the α-relaxation time τα [12–15],
defined as the decay time of the relaxation function
for density fluctuations, i.e., the intermediate scattering

function. However, in two dimensions, the strong density
fluctuation diverges at long wavelengths and suppresses its
intermediate plateau. Thus, τα no longer represents the
microscopic structural relaxation time. The first problem
arises on how to define the relaxation time that represents
viscous slowdown of the dynamics.
Furthermore, a more intriguing problem lies in the

potential role of hydrodynamic effects on the transport
properties. For a liquid in two dimensions, a slow t−1 decay
(the so-called long-time tail) of the velocity and stress
autocorrelation functions leads to a hydrodynamic anomaly
that is marked by a logarithmic divergence of transport
coefficients such as diffusivity and viscosity [16–19]. How
it alters the transport properties of deeply cooled liquids at
the macroscopic level is a fully open issue, and the glass
transition may be influenced by a mechanism that is
different from the freezing of microscopic structural relax-
ation due to the cage effect. In fact, it is difficult to
distinguish the characteristic timescales of the long-time
tail and the microscopic structural relaxation, both of which
become significantly large upon supercooling. Such long-
wavelength fluctuations derived from hydrodynamics may
even possibly prohibit the 2D glass transition. Therefore, in
addition to the effect of elastic fluctuations that inhibit the
existence of 2D crystals, it is important to reveal how
macroscopic hydrodynamic fluctuations can influence
the microscopic structural relaxation in 2D glass-forming
liquids.
In this Letter, in order to address these issues, we

perform large-scale MD simulations of a 2D glass-
forming liquid and examine how the growth of various
relaxation times is related to the divergence of macroscopic
viscosity in the presence of long-wavelength fluctuations.
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The simulations are performed with a particular focus on
how the dynamics depend on the system size, so that the
anomalous enhancement of elastic and hydrodynamic
responses can be characterized. Simulations are performed
for a 2D variant of Kob-Andersen binary Lennard-Jones
mixtures [20], in which the composition is 65∶35
[8,21–23]. The mixture is annealed for a sufficiently long
time (maximum of 4 × 109 simulation steps) after rapid
cooling to target temperatures in the range 0.4 ≤ T ≤ 1.0 in
the presence of Langevin heat baths. The production runs
are then performed as Newtonian (NVE) dynamics simu-
lations to prevent the damping of long-wavelength fluctu-
ations. The data presented in the remainder of this Letter are
averaged over four or eight independent simulations
(Supplemental Material [24]).
First, we revisit three relaxation functions that have

been considered in recent studies [7–10,23]. The first
is the standard self-intermediate scattering function
(SISF) Fsðk;tÞ¼ð1=NÞhPN

j¼1expfik·½rjðtþt0Þ−rjðt0Þ�gi,
with the wave vector set to jkj ¼ 2π=σ11 so that its decay
represents particle movement over a distance of the particle
diameter σ11. However, in two dimensions, long-wave-
length elastic vibrations persist and these enhance the
mean-squared thermal displacement δ2 [7,25]. Figure 1
shows the SISF for a fixed temperature T ¼ 0.4, where the
size-dependent behavior is in agreement with previous
studies [7,8]. The plateau heights represent the Debye-
Waller factor fp ∼ expð−k2δ2=2Þ [24,26] and tend toward
zero as the system size increases. Therefore, the α-relax-
ation time (the decay time of the SISF) is strongly
influenced by long-wavelength fluctuations and cannot
represent the microscopic structural relaxation time.
The other two functions are the “neighbor-relative” SISF

(also known as the “cage-relative” SISF [9,10,23,27,28])

and bond relaxation function [22,29–31]. These are also
plotted in Fig. 1. These functions characterize local
structural relaxations. The former is defined by

FR
s ðk; tÞ ¼ ð1=NÞh

XN
j¼1

expfik · Δrrelj ðtÞgi: ð1Þ

We here introduce the neighbor-relative displacement
Δrreli ðtÞ ¼ ð1=Nn:n:Þ

P
j∈n:n:½ΔriðtÞ − ΔrjðtÞ� (also known

as the cage-relative displacement [9,10,32]), where the
summation is over Nn:n: initially neighboring pairs of
particles, indicating the changes in the relative positions.
A similar displacement was considered in previous studies
on 2D crystalline melting for the same purpose of elimi-
nating long-wavelength fluctuations [3,33,34]. The bond
relaxation function FBðtÞ, in contrast, does not involve
displacements of the particles, but simply characterizes the
proportion of initially neighboring pairs that have survived
after a certain time (Supplemental Material [24]). From the
observation that neither function is strongly dependent on
the system size, contrary to the standard SISF, the effect of
long-wavelength fluctuations is marginal for these relax-
ation functions, as expected from their definitions.
Along with our aim to relate these microscopic relaxation

functions with the macroscopic viscosity, Fig. 1 also shows
the stress relaxation function (or “dynamic modulus” [23])

GðtÞ ¼ V
kBT

hσxyðtÞσxyð0Þi; ð2Þ

where σxyðtÞ is the off-diagonal stress tensor [the data are
normalized with respect to the instantaneous shear modulus
G∞ ¼ Gð0Þ].GðtÞ exhibits a stretched plateau modulus and
no system-size dependence at a low temperature of T ¼ 0.4,
as shown in Fig. 1. In a recent study, the plateauwas found to
become unclear, rendering it difficult to evaluate the plateau
modulus, for higher temperatures at the onset of slow
dynamics, T ≥ 0.7 [23].
Next, we define relaxation times and compare them with

the transport coefficients—the α-relaxation time τα, neigh-
bor-relative relaxation time τR, and bond relaxation time τB
can be defined as the decay times of the standard SISF,
neighbor-relative SISF, and bond relaxation functions
(Supplemental Material [24]). For this purpose, we refer
to the Stokes-Einstein (SE) relationDη=T ¼ const between
the diffusivity D and the viscosity η. This relation holds in
normal liquids at high temperatures, but is violated in the
deeply supercooled regime [21,31,35–37]. In simulation
studies of glass-forming liquids, because the microscopic
structural relaxation time is expected to grow proportion-
ally with the viscosity, the left-hand quantityDη=T (the so-
called SE ratio) is often replaced by the product of the
diffusivity and the relaxation time Dτα, and its T depend-
ence is usually examined. This assumption may break
down in two dimensions because τα is robustly suppressed
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FIG. 1. Relaxation functions Fsðk; tÞ, FR
s ðk; tÞ, and FBðtÞ are

plotted for system sizes N ¼ 256 000, 64 000, 16 000, 4000, and
1000 at T ¼ 0.40. The corresponding stress relaxation function
GðtÞ is also plotted (normalized with respect to the instantaneous
shear modulus G∞).
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by the long-wavelength fluctuations. Thus, we calculate the
temperature dependence of the generalized SE ratio
Dτ ðτ ¼ τα; τR; τBÞ to examine how the three relaxation
times change with respect to the diffusivity D as the
temperature decreases. We further compare Dτ with the
original SE ratio Dη=T. This is done by explicitly calcu-
lating the shear viscosity η via the Green-Kubo formula
η ¼ R∞

0 GðtÞdt [21,23], for which we require an error
estimate because of the slow convergence of this integral
(Supplemental Material [24]).
In Figs. 2(a)–2(c), the original SE ratio Dη=T is shown

for system sizes of N ¼ 1000, 16 000, and 256 000 as
functions of the inverse temperature; the generalized SE
ratios are also shown. Although the diffusivity D has a
logarithmic dependence on the system size N, the gener-
alized SE ratios can be meaningfully compared across
different values of N because of their similar temperature
dependence [24]. First, the standard SE ratio increases as
the temperature decreases, as in 3D systems. However,
Dτα exhibits system-size dependence and nonmonotonic
temperature dependence and is clearly decorrelated from
Dη=T, which is consistent with the results of a previous
study [21]. In contrast, DτR collapses to the standard SE
ratio for all system sizes, showing that the neighbor-
relative relaxation time τR grows in proportion to the
viscosity, satisfying τR ∼ η=T [see also Fig. 2(d)]. This
relation provides an alternative to τα ∼ η=T [35,37–39],
and thus τR clearly takes the role of the microscopic

structural relaxation time. We also find that the generalized
SE ratio for bond relaxation is preserved, i.e., D ∝ τ−1B ,
indicating that the bond relaxation function is a descriptor for
the 2D diffusive motion in a similar manner to other 3D
supercooled liquids [31,39].
Thus far, we have seen that the diffusivity and viscosity

are linked to timescales associated with local particle
motion that is irrelevant to the long-wavelength fluctua-
tions. However, this is not the end of our discussion, and
we further investigate the hydrodynamic effects on
the diffusivity by thoroughly examining the dependence
on the system size. As shown in Fig. 3(a) for T ¼ 0.4,
the mean-squared displacements (MSDs) hjΔrðtÞj2i ¼
ð1=NÞhPN

i¼1 jriðtþ t0Þ − riðt0Þj2i exhibit linear growth
and remain dependent on the system size in the long-time
limit. For temperatures 0.4 ≤ T ≤ 1.0, we further estimate
the diffusivity D by fitting D ¼ hjΔrðtÞj2i=4t in the long-
time region 10 ≤ hjΔrðtÞj2i ≤ 20 for different system sizes.
The result is shown as a function of the box length L in
Fig. 3(b). The diffusivity D grows logarithmically with
system size, even at low temperatures. This size depend-
ence cannot arise from a simple superposition of elastic
vibrational fluctuations (the so-called Mermin-Wagner
fluctuations [9]), but should be attributed to a different
origin.
As a statistical measure for the motion of individual

particles, the velocity autocorrelation function (VACF)
ZðtÞ ¼ ð1=dÞhvðtÞ · vð0Þi [19] contains information regard-
ing the delay in the viscoelastic responses of liquids.
Importantly, VACF is related to the diffusivity via the
Green-Kubo formula D ¼ R∞

0 ZðtÞ dt and should provide
clues as to the system-size dependence. However, calcu-
lating the full resolution of VACF for a glass-forming liquid
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and (c) 256 000 are shown as functions of the inverse temper-
ature. Error bars indicate the standard deviation arising from
the variation in η between independent runs. (d) η=T is plotted
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FIG. 3. (a) MSDs are plotted for system sizes N ¼ 256 000, 64
000, 16 000, 4000, 1000, and 250 at T ¼ 0.40. The shaded region
indicates the fitting region for evaluation of diffusivity. (b) Dif-
fusivity D as a function of box length L. The corresponding
particle number ranges over 250 ≤ N ≤ 1.024 × 106. For each
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is a difficult task, because random motions of the caged
particles blur the slow process of diffusion. In a high-
density 3D liquid at a moderately high temperature, the
VACF exhibits a negative correlation in the intermediate
time regions [40–42], which can be attributed to the
velocity reversal caused by elastic vibrations of tagged
particles [41]. Hence, for the present dense 2D liquid, we
focus on high temperatures to demonstrate the crossover
from transient elastic response to long-time hydrodynamic
decay over a full time range. Figure 4(a) shows the VACF
for different system sizes N at T ¼ 1.0. Negative correla-
tions exist for all N, indicating backward motion originat-
ing from elastic vibrations (see the plot for N ¼ 256 000 in
the inset). However, the VACF does not simply decay from
negative values to zero, but becomes positive over a longer
time range for sufficiently large system sizes, such as
N ≥ 256 000. By examining a much larger system size
(N ¼ 4.096 × 106), the long-time limiting behavior is
found to be consistent with the hydrodynamic t−1 tail that
appears in normal 2D liquids [16–19,43,44]. Because
the kinematic viscosity is large, i.e., ν ¼ η=ðnmÞ ≫ D,
the analytical expression can be simplified to ZðtÞ ¼
ðkBT=8πηÞt−1. Both the magnitude and power-law expo-
nent of VACF coincide with this expression. Therefore, the
system-size dependence of diffusivity D is attributed to the
purely hydrodynamic origin in the long-time limit where
the transient elastic response vanishes.

Notably, the VACF itself exhibits system-size depend-
ence at times before the t−1 power-law tail. For each N, the
VACF exhibits a systematic decrease before becoming
uncorrelated. In Fig. 4(b), we show the size dependence
of the finite-time diffusivity

D0ðtÞ ¼
Z

t

0

ZðtÞ dt; ð3Þ

in which the long-time limit yields the long-time diffusivity
D ¼ limt→∞ D0ðtÞ. This finite-time diffusivity D0ðtÞ is in
good agreement with the diffusivityD evaluated fromMSD
in the long-time limit. At the same time, it exhibits size
dependence in an earlier time range, before converging to
the long-time diffusivityD. Therefore, quite reasonably, the
VACF ZðtÞ itself is affected by the hidden hydrodynamic
long-time tail, which has been difficult to find in simu-
lations of 2D glass-forming liquids [21,23,36,45].
The above results suggest that the origin of the loga-

rithmic divergence of diffusivity is the t−1 long-time tail
and that it should exist even at low temperature. The long-
time tail ZðtÞ ¼ ðkBT=8πηÞt−1 no longer involves the
diffusivity D in its expression and is free from the self-
consistency problem leading to a faster than t−1 decay [18].
Therefore, the diffusivity simply diverges as

D ∼
kBT
8πη

ln

�
L
σ11

�
: ð4Þ

Hydrodynamic theories also predict the t−1 tail in the shear
stress autocorrelation function, which may cause logarith-
mic divergence of shear viscosity [16]. The shear stress
autocorrelation function is calculated for the same temper-
ature but still such a power-law tail is not clear with the
system size N ¼ 4.096 × 106 (Supplemental Material [24]).
It is worth noting that the analytic expression (4) brings

about an increase of SE ratio Dη=T ∼ lnL over the entire
range of temperature. This ratio increases by an order of
magnitude if the system length L increases by 5 orders of
magnitude. While a common expectation seems to be that
the effect of the long-time tail is marginal in 2D glass
transitions [45], it is clear that the long-time tail also causes
violation of the SE relation, indicating that it may influence
the 2D glass transition.
Finally, we address the relevance of our results to

recent studies. A recent simulation study on the same
2D Kob-Andersen liquid reported that the mean square of
the neighbor-relative displacement (i.e., cage-relative
MSD) asymptotically approaches the normal MSD in the
long-time limit [23]. Together with our observation of the
finite-size effects in the MSD, their result implies that
the neighbor-relative displacement is also system-size
dependent, finally approaching the linear behavior of the
usual MSD and giving rise to the same diffusivity.
However, the neighbor-relative relaxation time τR is
short enough that it remains virtually unaffected by the
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for small N, for ease of visibility. The straight line indicates the
hydrodynamic long-time tail ZðtÞ ¼ ðkBT=8πηÞt−1. (Inset) Semi-
log plot of the raw value of VACF for N ¼ 256 000. (b) Time-
dependent diffusivity, calculated by the Green-Kubo formula
D0ðtÞ ¼ R

t
0 ZðtÞ dt for different system sizes. Dotted lines in-

dicate the diffusivity D evaluated from the MSD in Fig. 3(b).
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long-wavelength fluctuations. Therefore, our present
results fully justify the use of the equivalent cage-relative
SISF in recent colloidal experiments [9,10].
We note that our results rely on the use of the NVE

ensemble to conserve the total momentum. Both the
thermal vibrations and the hydrodynamic fluctuations at
long wavelengths are suppressed by using the Brownian
dynamics [8] or specialized Monte Carlo algorithms [46]. It
has long been assumed that glassy dynamics are unaffected
by the choice of ensembles, as in 3D liquids [47], but this is
not the case in two dimensions for quantities that are
affected by long-wavelength elastic and hydrodynamic
fluctuations, including the standard SISF and the MSD.
In conclusion, the dynamics of a 2D glass-forming

liquid are covered by hydrodynamic power-law correla-
tions that lead to the logarithmic divergence of diffusivity,
in addition to the recently revealed long-wavelength
elastic fluctuations arising from the emerging rigidity of
the liquid. Both the elastic and hydrodynamic fluctuations
persist at long wavelengths to produce a concerted effect
on the transport properties. Moreover, it is found that the
relaxation time defined from the relative displacement
between neighbors (τR) grows in proportion to η=T as
the temperature decreases, implying that local density
fluctuations govern the drastic increase in viscosity. The
combined elastic and hydrodynamic anomalies are
expected to be relevant to both the existence of the 2D
glass transition [46] and the dynamical features of 2D
crystal melting, although further clarification is required in
forthcoming studies.
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