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Pattern formation, observed experimentally in a radio-frequency plasma in annular geometry, and
characterized by azimuthal symmetry breaking of the plasma parameters, is reported. The azimuthal
modulation increases with increasing pressure in the range 1–300 Pa. These experimental observations are
accurately described by a fluid model in which the transport coefficients are computed from a 0D
Boltzmann kinetic equation. A linear stability analysis shows that unstable modulations develop at low and
intermediate pressures, following an instability mechanism due to an energy transport effect—the
instability mechanism lies in the sign of off-diagonal terms for the electron particles and energy fluxes
expressed as functions of gradients of the plasma density and the electron temperature. This model is an
excellent candidate to explain the occurrence of striations in radio-frequency plasmas.
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Introduction.—Pattern formation is a ubiquitous phe-
nomenon in plasmas, arising from interaction with bounda-
ries [1], volumetric processes, or spatiotemporal complexity
[2]. Striations are a particular form of self-organization
observed in various conditions: dc discharges [3], magnetic
mirrors [4], laser generated plasmas [5], and ionospheric
plasmas [6,7]. In dc nonequilibrium gas discharge plasmas
driven at intermediate neutral pressures (10–1500 Pa),
striations are usually interpreted as an ionization instability.
The source of this specific instability is generally recognized
in the fact that the ionization frequency is a function of the
electron density, a situation that arises when stepwise
ionization of excited atoms is important [3,8,9]. Striations
have also been observed in radio-frequency (rf) discharge
plasmas [10–12], but the physical origin of this phenomena
is not as well understood, despite numerical investigations
[13]. This is particularly clear in the low-pressure regimes
where direct ionization is predominant against metastable
two-step ionization which cannot be considered at the origin
of the instability [14–16]. In this Letter, we propose a model
where the ionization instability leading to striations is not
driven by stepwise ionization but mainly by a transport
process which affects the electron energy flow and tends to
reinforce the electron temperature fluctuations. Computing
the transport coefficients from a 0DBoltzmann equation, we
extend a previousmodel [17], showing good agreementwith
a detailed experimental characterization of the formation of
striations in an annular rf plasma.
Striations formation in a rf plasma.—The experimental

setup, sketched in Fig. 1(a), consists of a cylindrical pyrex
tube of radius R2 ¼ 64 mm and height H ¼ 118 mm

terminated by two metal flanges. A smaller pyrex tube
of radius R1 ¼ 16 mm is inserted through the top flange
and hosts a 14-turns coil. The plasma is created by a
5.8 MHz rf current circulating in the coil. The coil is
divided in three sections (5-4-5 turns) connected in series
with capacitors in order to minimize the coil rf potential

(a)

(c)

(b)

FIG. 1. (a) Experimental setup. (b) Observed azimuthal modu-
lation mode m in incident power vs pressure parameter space.
(c) Typical plasma optical emission recorded by the camera. See
text for details.
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with respect to ground [18]. As a consequence, this design
cannot operate in the capacitive regime and the plasma may
only be sustained from inductive coupling (requiring a
minimum power of typically 20 W). Argon gas is injected
at constant flow rate and a valve at the entrance of the pump
controls the operating neutral pressure, ranging from 1 to
300 Pa. The pressure is measured using a combined cold
cathode-pirani Pfeiffer PKR251 gauge. A Bird 43 watt
meter measured the incident and reflected powers delivered
to the rf matchbox. The vertical integrated plasma optical
emission is observed from the opposite flange, fitted with a
50 mm diameter optical window using a IO-Flare 2MP360
camera (1080 × 1080 pixels, 8 bits gray scale images, at a
rate of 360 fps). Experiments reported in this Letter involve
plasma densities of a few 1010 to a few 1011 cm−3 [18].
The striations reported in this Letter consist of pattern

formation breaking the azimuthal symmetry of the setup.
As a consequence, the optical emission as recorded from
the camera and displayed in Fig. 1(c), shows modulations
of the form cos ðmθÞ, where θ is the azimuthal angle and m
an integer. Let us first describe the top-left panel which
shows an azimuthally homogeneous plasma observed at the
lowest pressures and highest powers (the internal tube is
observed brighter, and the plasma diffuses downstream of
the internal tube). In this regime, the azimuthal symmetry is
preserved, corresponding to an absence of azimuthal
modulation (i.e., m ¼ 0). This homogeneous regime is
labeled 0 (according to the value of the modulation mode
number m) in the parameter space (pressure, incident
power) displayed in Fig. 1(b) and is observed below
10 Pa and above 40 W. As the pressure is gradually
increased, the plasma parameters show azimuthal modu-
lations with increasing values of m. The panels of Fig. 1(c)
from left to right show typical observations of these
regimes with increasing values of m. The light intensity
recorded by the camera is integrated over the full visible
spectrum and the synthetic color map used in Fig. 1(c) was
chosen to mimic the visible spectrum. The experimental
points displayed as open circles in Fig. 1(b) correspond to
transitions between regimes observed as the pressure was
increased, at constant incident power delivered to the
antenna. We stress here that bistability between adjacent
modulated regimes was observed. For instance, the tran-
sition from the m ¼ 0 azimuthally symmetric regime to the
m ¼ 2 regime was observed to occur at 13 Pa (i.e.,
increasing the pressure), while the transition from m ¼ 2
to the m ¼ 0 regime was observed at 3 Pa (i.e., decreasing
the pressure)—for 56 W incident power. The boundaries
reported in Fig. 1(b) should thus be regarded as indicative
when compared to the linear instability analysis presented
below. Moreover, the modulated regimes were also
observed to slowly rotate (at a few rad s−1), with rotation
rates highly sensitive to details of the experimental setup
(such as neutral gas or vessel temperature drifts, presence of
intrusive probes). These features will not be discussed

further in this Letter. For the highest pressures and high
incident power, the plasma recovers the azimuthal sym-
metry: a torus-shaped plasma is observed around the
internal tube [see bottom right panel of Fig. 1(c)]. A linear
instability model is derived in the remainder of this Letter,
which reproduces the main experimental observations:
(i) the modulation wave number increases with increasing
neutral pressure and (ii) axisymmetry is recovered at large
pressures.
Model for the striation formation.—We use a modified

version of an electron fluid model proposed initially by
Ingold for the modeling of the nonequilibrium dc positive
column [19]. The validity of a fluid model is ensured at the
lowest investigated pressure (1 Pa), for which the ion-mean
free path is of the order of 3 mm, i.e., lower than the radial
extension ðR2 − R1Þ. This model—sometimes called a
nonlocal moment model—differs from the usual local
moment in two main aspects. First, the balance equations
are derived by taking moments of the Boltzmann equation
after the two-term expansion of the energy distribution
function is made. Second, the transport and rate coefficients
appearing in the electron fluid equations are not calculated
from the usual Maxwellian assumption but are parame-
trized by the average electron energy (or electron temper-
ature) by the numerical solutions of the 0D Boltzmann
equation for different values of the electric field. Although
it is generally believed that a kinetic approach is necessary
for a precise modeling of discharges at low pressure, it was
shown by Ingold that the fluid nonlocal moment model
shows good agreement with the results obtained by the
numerical solutions of the 1D kinetic Boltzmann equation.
For the sake of simplicity, and to extract the physical

mechanisms at work, we ignore the axial dependence
of all plasma parameters. Introducing a linear coordinate
x ¼ Rmθ, where Rm ¼ 2.8 cm is the radius of the maxi-
mum plasma density [18,20] and neglecting curvature, the
particle and energy balance equations for the radially
integrated electron density ne and electron temperature
Te read

∂tne þ ∂xΓe ¼ ðνizðTeÞ − νrÞne; ð1Þ

∂tð3=2neTeÞ þ ∂xHe ¼ P0nBe − neνizðTeÞEcðTeÞ: ð2Þ

Here, νizðTeÞ is the ionization frequency, νr accounts for
the radial losses of particles at R1 and R2, P0 is the
normalized power density, Ec is the collisional energy loss
per electron-ion pair created [21] and B depends on the type
of electron heating mechanisms. Here, we will restrict our
study to the case of pure inductive coupling, i.e.,
B ¼ −1=2—however it is easily shown that this choice
only slightly modifies the dispersion relation and the values
of the most unstable modes but does not modify the
conclusions of our investigation.

PHYSICAL REVIEW LETTERS 123, 265001 (2019)

265001-2



Using the two-term approximation for the electron
distribution function, the electron particles and energy
fluxes Γe and He in Eqs. (1)–(2) take the form

Γe ¼ −neμeE − ∂xðneDeÞ; ð3Þ

He ¼ −neβeE − ∂xðneGeÞ: ð4Þ

Here De and μe denote the well-known coefficients of
electron diffusion and mobility, respectively, while Ge and
βe are the electron energy diffusion and electron energy
mobility coefficients [22]. For a quasineutral plasma within
the ambipolar assumption, Γe ¼ Γi, when the ion motion is
mobility limited, the electric field along the azimuthal
direction E is given by the relation E ¼ Γe=ðneμiÞ, where
μi is the ion mobility. Hence, the electric field can be
eliminated from Eqs. (3)–(4) leading to the following
expressions for Γe and He:

Γe ¼ −Da∂xne − ηe∂xTe; ð5Þ

He ¼ −χe∂xne − κe∂xTe: ð6Þ

In these equations, Da ¼ μiDe=μe is the ambipolar
diffusion (we used the inequality μi=μe ≪ 1),
κe ¼ ne½∂Te

Ge − ðβe=μeÞ∂Te
De� is the usual electron

thermal conductivity while the off-diagonal terms,
ηe ¼ neðμi=μeÞ∂Te

De and χe ¼ Ge − ðβe=μeÞDe lead to
fluxes similar to the Soret effect (or thermophoresis) and
the Dufour effect [23]. These coefficients can be obtained
from the 0D Boltzmann code Bolsig+ [24] as functions of
the electron temperature, defined as 2=3 times the electron
mean energy [25]. The values of the ionization frequency
νizðTeÞ and the total power losses νizðTeÞEcðTeÞ, taking
into account elastic and inelastic processes, are also com-
puted using the Bolsig+ code.
Note that it can be shown that χe ¼ 0 and ηe > 0 when

the electron function distribution is Maxwellian and the
collision for momentum transfer is assumed independent of
the electron velocity [22]. From the Bolsig+ simulations,
χe and ηe appear to be strictly negatives for argon.
Consequently, contrary to the diagonal terms, −Da∂xne
and −κe∂xTe which tend to smooth out any temperature or
density gradients, the off-diagonal terms, −ηe∂xTe and
−χe∂xne tend to reinforce the electron density or electron
temperature fluctuations. As shown in the following, an
instability can occur when these destabilizing contributions
dominate.
Equilibrium plasma parameters.—The stationary and

homogeneous equilibrium electron density n0 and electron
temperature T0 are given from Eqs. (1) and (2) by the
implicit solutions of the equations νr ¼ νizðT0Þ and
P0nB0 ¼ n0νrEcðT0Þ. The instability criterion derived below
is independent of n0, one thus focuses on the value of T0.
Assuming a constant and uniform value for T0 in the

annular section, the radial profile of the electron density
nðrÞ is obtained from the diffusion equation

1

r
d
dr

�
r
dn
dr

�
þ β2nðrÞ ¼ 0;

with β2¼νizðT0Þ=DaðT0Þ. The boundary conditions
impose the out fluxes −Dadn=drjR1;2

¼�nðR1;2ÞuB, where
uB ¼ ðT0=MiÞ1=2 is the Bohm velocity with Mi the ion
mass. Introducing ψ ¼ uB=Da, T0 is computed from the
following equation [26]:

ðβJ1ðβR1ÞþψJ0ðβR1ÞÞðβY1ðβR2Þ−ψY0ðβR2ÞÞ
¼ðβY1ðβR1ÞþψY0ðβR1ÞÞðβJ1ðβR2Þ−ψJ0ðβR2ÞÞ; ð7Þ

where J0 and Y0 (respectively, J1 and Y1) are zero order
(respectively, first order) Bessel functions of the first
and second kind. The solid line in Fig. 2(b) shows the
evolution of the equilibrium temperature T0 as a function
of pressure, computed from Eq. (7). The ionization fre-
quency is computed using the Bolsig+ code, assuming a
temperature of 500 K for the neutral gas, and the ion
mobility is computed in the collision dominated limit as
μi ¼ e=ðMiNgσivthiÞ with vthi the ion thermal velocity,
σi ¼ 1.74 × 10−18 m2 the cross section for ion-neutral
collisions at 700 K [27]. A good agreement is observed
with the values of the electron temperature reported from
PIC simulations in the same geometry [20], estimated at
r ¼ Rm, and reported as symbols in Fig. 2(b).
Linear stability analysis.—To investigate the stability of

the plasma around the equilibrium state ðn0; T0Þ, we intro-
duce small density and temperature perturbations δne and

FIG. 2. (a) Normalized energy relaxation length λϵ=ðR2 − R1Þ,
(b) electron temperature T0 computed from the annular equilib-
rium model, (c) unstable azimuthal mode numbers m as a
function of pressure in linear scale, and (d) logarithmic scale.
See text for details.
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δTe such that ne ¼ n0 þ ReðδneeγtþikxÞ, Te ¼ T0 þ
ReðδTeeγtþikxÞ, where γ is the growth rate in time and k is
the perturbation wave number. Substituting these expres-
sions in the continuity Eq. (1) andusingEq. (5), we obtain the
dispersion relation

γ ¼ −D0
ak2 þ n0

∂νiz
∂T

����
T0

δTe

δne
; ð8Þ

where Z0 denotes a parameter Z evaluated at Te ¼ T0,
and we have neglected ηe∂xTe in Eq. (5). Thus, the
dispersion relation has two contributions: one due to dif-
fusion and one coming from the fluctuations of electron
temperature induced by the density fluctuations. Clearly,
since the diffusion contribution is always negative, a desta-
bilizing effect occurs only if δTe=δne is positive enough. The
evaluation of δTe=δne is obtained after the linearization
of Eq. (2), using Eq. (6) and neglecting the small term
∂tð3=2neTeÞ:

δTe

δne
¼ −

3E0
cν

0
iz=2þ k2χ0e

n0½∂ðνizEcÞ=∂T�
���
T0

þ k2κ0e
: ð9Þ

This result shows that δTe=δne is positive if the transport
coefficient χ0e is itself negative enough. Since ν0iz ∝ Ng and
χ0e ∝ N−1

g , a destabilizing effect is helped at low pressures.
Combining Eq. (8) and Eq. (9), a condition for the instability
can be expressed asAk4 þ Bk2 þ C < 0, whereA, B, and C
depend on the parameters previously introduced. It can be
checked that a necessary and sufficient condition for this
inequality is

χ0e <

�∂νiz
∂T

����
T0

�
−1
�
−D0

a
∂ðνizEcÞ

∂T
����
T0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D0

aκ
0
e

n0
E0
cν

0
iz
∂νiz
∂T

����
T0

s �
: ð10Þ

This implies that the transport coefficient χ0e must be
sufficiently negative in order to induce the instability of
the homogeneous and steady state (n0, T0). Note that this
condition is independent of the value of the equilibrium
plasma density n0 since κ0e=n0 is independent of n0.
Discussion and comparison with experimental results.—

When the instability condition is met, the fourth order
polynomial in k is negative in a range of k values extending
from kmin to kmax and the wave vector kγmax of the most
unstable perturbation corresponds to the most positive
value of γ. As the transport coefficients strongly depend
on the equilibrium electron temperature T0, the details of
the instability described above strongly depend on the
neutral pressure. Let us now investigate the influence of
neutral pressure on the unstable modes, and show that the

instability indeed reproduces the experimental features
displayed in Fig. 1(b). Axisymmetry of the experimental
configuration imposes periodic boundary conditions on the
perturbed quantities [i.e., δneðx ¼ 0Þ ¼ δneðx ¼ LÞ]; wave
numbers k are thus restricted to k ¼ 2πm, where m is the
azimuthal mode number. Figure 2(c) shows the evolution of
the unstable azimuthal modemwhen solving the dispersion
relation given by Eqs. (8) and (9). Unstable modes are
obtained formmin < m < mmax and the most unstable mode
mγmax lies within this range. A first observation is that our
model reproduces the main feature of the experimental
configuration: as the pressure increases, the most unstable
mode number mγmax increases with a range of azimuthal
modulations similar to that of the experiment. A second
observation is that the system is linearly stable above
115 Pa and thus axisymmetry is recovered at high
pressures—the most unstable wave number reported in
Fig. 2(c) being null. We emphasize here that the model is
restricted to the linear phase of the instability, while the
experimentally observed mode is the nonlinearly saturated
regime. Since bistability exists in the experiment, we do not
expect the model to exactly predict the values for the
observed transitions between modes as presented in
Fig. 1(b). Closer investigation of the dispersion relation
(not shown) shows that, for a constant value of T0, the most
unstable mode increases with increasing pressure, while,
for a constant neutral pressure, the most unstable mode
decreases with decreasing T0. The simplifying hypothesis
of our model, which considers a uniform electron temper-
ature in the annular section, seems to lead to overestimated
electron temperature values as compared to those reported
in PIC simulations [20]. In turn, this overestimates the
value of the most unstable wave number. A first improve-
ment would thus to incorporate a transport equation for the
energy, especially for regimes when the energy relaxation
length λϵ [28] is not significantly larger than the typical
radial extension of the configuration. Figure 2(a) displays
λϵ=ðR2 − R1Þ and shows that for pressure above 130 Pa, the
energy relaxation length is lower than twice the radial size
of the experiment. A detailed computation of the equilib-
rium electron temperature for pressures above typically
100 Pa would thus require a transport equation for the
energy—a task beyond the scope of the present Letter. We
note from Fig. 1(c) that, indeed at large pressures, the radial
extension of the plasma is restricted to locations close to the
inner tube and that this strongly inhomogeneous situation
may only be captured when adding an energy transport
equation.
Conclusion.—In this Letter, we developed an electron

fluid model in which the transport coefficients are com-
puted from a 0D Boltzmann equation. A linear stability
analysis shows that striations may develop at low and
intermediate pressures, following an instability mechanism
due to a transport effect, in contrast with the current
understanding of the striations in dc positive columns.
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The instability mechanism lies in the sign of off-diagonal
terms for the electron particles and energy fluxes expressed
as functions of gradients of the plasma density and the
electron temperature. This model reproduces the features of
unstable modes experimentally observed in an inductive
radio-frequency created plasma in an annular vacuum
vessel. The model reported in the present Letter thus
proposes a new framework to understand pattern formation
observed in radio-frequency plasma discharges. A first
improvement of this work would be a detailed study of the
nonlinear saturation mechanisms of this instability. A
systematic investigation of the influence of the nature of
the gas on the development of the instability should also be
carried out experimentally and numerically, with an empha-
sis on atomic and molecular gases.
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