
 

Experimental Measurement of the Hilbert-Schmidt Distance between Two-Qubit States
as a Means for Reducing the Complexity of Machine Learning

Vojtěch Trávníček,1,* Karol Bartkiewicz ,1,2,† Antonín Černoch,3,‡ and Karel Lemr 1,§

1RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Czech Academy of Sciences,
17. listopadu 12, 771 46 Olomouc, Czech Republic

2Faculty of Physics, Adam Mickiewicz University, PL-61-614 Poznań, Poland
3Institute of Physics of the Czech Academy of Sciences, Joint Laboratory of Optics of PU and IP AS CR,

17. listopadu 50A, 772 07 Olomouc, Czech Republic

(Received 3 July 2019; published 23 December 2019)

We report on the experimental measurement of the Hilbert-Schmidt distance between two two-qubit
states by many-particle interference. We demonstrate that our three-step method for measuring distances in
the Hilbert space is far less complex than reconstructing density matrices and that it can be applied in
quantum-enhanced machine learning to reduce the complexity of calculating Euclidean distances between
multidimensional points, which can be especially interesting for near term quantum technologies and
quantum artificial intelligence research. Our results are also a novel example of applying mixed states in
quantum information processing. Usually working with mixed states is undesired, but here it gives the
possibility of encoding extra information as the degree of coherence between the given two dimensions of
the density matrix.
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Introduction.—Quantum information protocols such as
teleportation [1,2] and cryptography [3–5] established in
the field of quantum information processing [6,7] have a
significant impact on modern communications [8–10]. In
fact, early quantum communications networks based on
quantum teleportation have already been reported [11–14]
and experimentally realized [15,16]. Their physically
guaranteed security [17] and potential for scalability makes
them a preferable choice for future communications net-
works. In quantum communications the quality of a trans-
mission channel is crucial. It is due to security reasons,
where imperfections of the communication channel lead to
signal degradation known as noise. This noise can be
subsequently exploited by potential eavesdroppers [18,19].
Therefore, tools for the diagnostics of the transmission
channels are in demand. In quantum communications
theory one can quantify the accuracy of a signal trans-
mission by measuring the distance in the Hilbert space
between the transmitted and received states. The most
prominent distance measures include the Uhlmann-Jozsa
fidelity (Bures metrics), trace distance, and the Hilbert-
Schmidt distance (HSD) (for overviews, see, e.g., [20–22]).
These distance measures are also essential for a field of

quantum machine learning. Where a common method for
classification algorithms (e.g., k means) is to perform a
distance measurement among M sample vectors of dimen-
sion N. This procedure is a core subroutine for other
machine learning algorithms, e.g., supervised and unsu-
pervised nearest-neighbor algorithms. Quantum machine
learning emerges as a new field of research in quantum

information processing with linear optics, where the
benefits of applying this platform are unaffected by
unavoidably nondeterministic implementation of a univer-
sal set of gates [23]. It has been already demonstrated that
by using quantum resources one can reduce the complexity
of the algorithm from O½polyðMNÞ� to O½logðMNÞ�
[23–25]. Here, we demonstrate that by measuring the
distance in terms of HSD we obtain the complexity of
the distance-measuring algorithm to OðlogNÞ by using a
different approach from that in Ref. [24]. The HSD is
defined as

DHSðρ̂1; ρ̂2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðρ̂1 − ρ̂2Þ2�

q
; ð1Þ

where ρ̂1 and ρ̂2 are the density matrices representing the
two quantum, in general mixed, states. The HSD is a
Riemannian metrics, which makes it appropriate for apply-
ing in machine learning problems. Moreover, in contrast to
trace distance, HSD is nonincreasing under decoherence
[20,21]. For simplicity, let us explain how to implement the
k-means algorithm for finding two clusters of 3D points
enclosed in a cube using qubits. A density matrix for a qubit
can be expressed via Pauli matrices σ̂i and the identity
matrix Î as ρ̂ ¼ 1

2
Î þ u1σ̂x þ u2σ̂y þ u3σ̂z. Let us use this

kind of matrix to encode a data point u⃗ ¼ ðu1; u2; u3Þ for
ju⃗j ≤ 1

2
and i ¼ 1, 2, 3. The task is to assign different

N-dimensional data points (here N ¼ 3) to k clusters (let us
set two clusters) with sample reference vectors v⃗1 and v⃗2. A
data point u⃗ is classified to the closest cluster. It turns out
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that by a proper choice of mapping between vectors and
density matrices, we can ensure that Euclidean distance
jv⃗1;2 − u⃗j and HSD are equal up to a constant factor. Thus,
by assigning data points to a cluster corresponding to the
nearest reference vector, depending on the distribution of u⃗,
we can end up with two clearly separable clusters as shown
in Fig. 1. In the next step of the k-means algorithm, new
positions of centers of clusters are found as mean positions
of points belonging to a given cluster. The classification
process is repeated. If points do not change their assigned
clusters, the algorithm is terminated. Note that the same
applies to larger systems, e.g., for a 15-dimensional (in
Hilbet-Schmidt space) physically accessible Bloch
ball (or the inscribed hypercube if the components of u⃗
need to represent data from a segment ½−l; l�, where l is
the size of the hypercube) the corresponding state is
given as ρ̂ ¼ 1

4
Î ⊗ Î þP

i¼1;2;3ðuiσ̂i ⊗ Î þ uiþ3Î ⊗ σ̂i þP
j¼1;2;3 ujþ3ðiþ1Þσ̂i ⊗ σ̂jÞ, where ju⃗j ≤ ffiffiffiffiffiffiffiffi

3=8
p

. For D-
dimensional Hilbert space a density matrix contains
ðD2 − 1Þ independent parameters given as vector u⃗ and
as many generalized Pauli operators [i.e., traceless gen-
erators of SUðDÞ], where ju⃗j ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 1Þ=2Dp

. This fact
makes the complete quantum state tomography a very
challenging problem, as it requires an exponentially large
number of measurements in relation to the number of qubits
constituting the composite system (see, e.g., [26–28]).
However, this otherwise problematic feature also opens a
new possibility to encode N ¼ D2 − 1 parameters in a
D-dimensional density matrix (i.e., the Hilbert-Schmidt
space). Note, that for pure states the number of independent
parameters is much lower, i.e., N ¼ 2D − 1. In this way, by
using mixed instead of pure states we can encode quad-
ratically more features into a given state. Once the encoding
is performed for M states a constant number of times, each

distance can be measured in only three steps. This is
because the HSD can be expressed by first-order overlaps
Oðρ̂i; ρ̂jÞ as described in Refs. [22,29,30]

DHSðρ̂1; ρ̂2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðρ̂1; ρ̂1ÞþOðρ̂2; ρ̂2Þ−2Oðρ̂1; ρ̂2Þ

p
; ð2Þ

where the directly measured observables there are defined
as Oðρ̂i; ρ̂jÞ ¼ Trðρ̂iρ̂jÞ. If ρ̂1 ¼ ρ̂2, we measure purity as
discussed, e.g., in Refs. [31–33]. Each overlap or other
functions of overlaps can be measured directly by utilizing
multiparticle interactions between copies of the investi-
gated states [22,29,32,34–39]. In contrast, by applying full
quantum tomography (see, e.g., [26]) ðD2 − 1Þ measure-
ments are required to calculate the value of HSD. For
technical reasons we measure each overlap by utilizing four
positive-valued measures (POVMs). For D ¼ 4 this
amounts to 12 POVMs for obtaining a single value of
DHS in contrast to 32 measurements needed in the case of
applying quantum state tomography (16 if two copies of a
state are used in parallel). This discrepancy can become
even greater in the case of larger values of D. The number
of the required observables to measure in each of the
three steps for a multiqubit overlap depends linearly on
the number of qubits forming the density matrix, i.e.,
n ¼ log2ðDÞ as OðnÞ ¼ O½log2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p Þ� (see, e.g.,
Refs. [29,35,37,39]). Thus, the complexity of the distance
measurement is OðlogNÞ.
Experimental setup.—Let us demonstrate the measure-

ment of HSD in a linear-optical experiment with photons as
information carriers. Here, the HSD is measured for two-
qubit states by simultaneous interaction between four
qubits. A straightforward approach uses four photons
and only 1 degree of freedom (d.o.f.) such as polarization
(see, e.g., Ref. [29]). Here we utilize 2 d.o.f. (polarization
and spatial) to encode two qubits (see Fig. 2); therefore,
only two photons were needed. In this way one achieves

FIG. 1. An example of two clusters of 1000 3D points assigned
to the nearest center of a cluster (given by arrows v⃗1 or v⃗1). By
encoding vectors u⃗ and v⃗i for i ¼ 1, 2 as density matrices of
qubits and by measuring distances between them as HSD we
properly assign all the points to one of the clusters. Thus, for two-
qubit states we can classify 15-dimensional points. Note that all
the points are embedded in a Bloch ball of a radius of 1

2
.

FIG. 2. Conceptual scheme for measuring the Hilbert-Schmidt
distance between two-qubit states. In general, two different states
ρ̂1 and ρ̂2 are encoded into polarization and spatial modes of
photon A and B, respectively. Photons A and B are then
simultaneously measured by POVMs Î and Ŝ, where the 2 degrees
of freedom are addressed holistically at the same time. The
operators Î and Ŝ are the identity and singlet state projection
where Ŝ ¼ jΨ−ihΨ−j.
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much higher detection rates which make the experiment
considerably faster. The photons are labeled A and B,
meanwhile their polarization and spatial modes are labeled
p and s. There are horizontal (H) and vertical (V)
polarization modes, and four spatial modes: 1–4 (see
scheme in Fig. 3). We have associated a horizontally
polarized photon with a logical state j0i and a vertically
polarized photon with a logical state j1i. Similarly, spatial
modes 1 and 3 are associated with a logical state j0i, modes
2 and 4 with a logical state j1i. For example, photon A
encodes state j00i if its polarization is made horizontal and
it is placed in a spatial mode 1, i.e., in our notation jH1i.
The two photons are generated in a crystal cascade

(known as the Kwiat source [40]) pumped by pulsed
Paladine (coherent) laser at λ ¼ 355 nm with 200 mW
of mean optical power and a repetition rate of 120 MHz.
The source consists of two BBO (β-BaB2O4) crystals and
generates polarization-entangled photon pairs at λ¼710nm,
i.e., jΨi ¼ cosðαÞjHHi þ eiθ sinðαÞjVVi. In this state, H
and V stand for horizontal and vertical polarizations. The
rates and mutual phase shift between horizontally and
vertically polarized photons can be tuned by adjusting the
pump beam polarization or by tilting one of the beam
displacers (BD1 or BD2 in Fig. 3). By doing so one can
prepare states with various amounts of entanglement. Each
photon from the generated pair is coupled into a single-
mode optical fiber and brought to one input port of the
experimental setup depicted in Fig. 3. The photons then
pass through beam displacers where the initial polarization
encoding is transformed into spatial encoding. Afterwards
the photons interact on the polarizing beam splitter (PBS)
where a second, in principle different, quantum state is
encoded into polarization d.o.f. As a result, two, in
principle different, two-qubit states are encoded into the
two d.o.f. The two states are then subjected to projective
measurements as discussed below and accompanied by
postselection. The photons are filtered by 5 nm interference
filters, coupled into single-mode optical fibers and brought

to single-photon detectors. Motorized translation M
ensures temporal overlap of the photons on PBS. To
demonstrate versatility of this approach, we have measured
the HSD between four Bell states, four separable states,
Werner states, and between Werner and Horodecki states.
To measure the HSD between any two states (ρ̂1, ρ̂2) the

first-order overlap has to be measured in three configura-
tions, i.e.,Oðρ̂1; ρ̂1Þ,Oðρ̂2; ρ̂2Þ, andOðρ̂1; ρ̂2Þ. The first two
configurations correspond to the situation when ρ̂1 (ρ̂2) is
encoded into both d.o.f. During the last configuration ρ̂1
and ρ̂2 are encoded each in one d.o.f. Measurement of each
first-order overlap Oðρ̂1; ρ̂2Þ is split into a measurement of
4 POVMs on each photon across its d.o.f., i.e., ÎA ⊗ ÎB,
ŜA ⊗ ÎB, ÎA ⊗ ŜB, and ŜA ⊗ ŜB, where the Î stands for
identity and the Ŝ for singlet state projection that were
implemented by a suitable rotation of half-wave plates
(HWPs) behind the PBS (for further information see the
Supplemental Material [41]). For example, the POVM
ÎA ⊗ ÎB consists of all combinations of local projections,
i.e., jH1; H3iA;B; jH2; H3iA;B;…; jV2; V4iA;B, while the
ŜA ⊗ ŜB consists of projections ð1= ffiffiffi

2
p ÞðjH2i − jV1iÞA

and ð1= ffiffiffi
2

p ÞðjH4i − jV3iÞB. Both of these POVMs (Î, Ŝ)
can be implemented in a single step, but in this experiment
they were implemented as a series of von Neumann
projections. The coincidence rates corresponding to spe-
cific POVMs are labeled fx̂ ŷ, where x̂, ŷ ∈ fÎ; Ŝg, where x̂
and ŷ are associated with photons A and B, respectively.
These values are obtained by summing up the coincidence
rates associated with respective von Neumann projections.
The mean value of the overlap operators relates to these
rates as

Oðρ1; ρ2Þ ¼ 1 − 2ðfŜ Î þ fÎ Ŝ − 2fŜ ŜÞ=fÎ Î: ð3Þ

Note that POVMs associated with fÎ Î measures the photon
rate and is needed for normalization. In the case of a
stable photon source and known setup parameters this value
is constant and state independent. The same is true for
POVMs ÎA and ÎB separately.
Experimental results.—First, we have measured the

distances between four Bell states jΦ�i ¼ ð1= ffiffiffi
2

p Þðj00i �
j11iÞ and jΨ�i ¼ ð1= ffiffiffi

2
p Þðj01i � j10iÞ. Encoding of the

states into the d.o.f. was implemented by a suitable choice
of pump beam polarization, rotation of the HWPs, and by
tilting one of the beam displacers (BD1). We have decided
to plot a second power of the HSD denoted D2

HS so it is
linear in terms of the physically measured quantities. The
obtained experimental and theoretically calculated values
of the second power of HSD between Bell states are shown
in Fig. 4(a). Next, we have measured the HSD between
separable states j00i, j11i, j01i, and j10i and visualized the
obtained values of D2

HS in Fig. 4(b) (see also [41]).
In the third part of the experiment, we have calculated the

values of D2
HS between Werner states which up to a local

FIG. 3. Experimental setup for measuring the Hilbert-Schmidt
distance of photonic two-qubit states. Spatial modes are labeled
by numbers 1–4. INA and INB denote the input of photons A and
B, respectively.
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unitary transformation can be expressed in a form of a
weighted sum of maximally entangled and maximally
mixed state

ρ̂W ¼ pjΦþihΦþj þ 1

4
ð1 − pÞÎ: ð4Þ

In the case of the mixed state, the outcome of each von
Neumann projection was obtained by accumulating coinci-
dence rates associated with four Bell states, i.e., making
use of the identity ρ̂1 ⊗ ρ̂2 ¼ 1

4
ðjΨþihΨþj þ jΨ−ihΨ−j þ

jΦþihΦþj þ jΦ−ihΦ−jÞ ¼ 1
4
I ⊗ I. Subsequently, we have

calculated the D2
HS between Werner states for various

values of the weight parameter p. The results are visualized
in Fig. 5(a). Finally, we have calculated the D2

HS between
Werner and Horodecki states. Horodecki states can be
expressed in the form of a weighted sum of the maximally
entangled and separable states

ρ̂H ¼ qjΦ−ihΦ−j þ ð1 − qÞjHVi: ð5Þ

Therefore, we had to measure the overlap between states
jΦþi (jΦ−i) and j01i encoded in polarization and spatial
mode, respectively. The rest of the necessary overlaps were
calculated in the same way as explained above. The values
of D2

HS between Werner and Horodecki states for various
weight parameters p and q are visualized in Fig. 5(b).

Conclusions.—We have reported on the experimental
measurement of the Hilbert-Schmidt distance between two-
qubit states by the method of many-particle interference.
This method allows us to measure the HSD between two
two-qubit density matrices by performing three overlap
measurements (four POVMs per overlap) instead of 32
measurements required to directly all parameters of two
two-qubit mixed states [28]. Our scheme works for both
mixed and pure states; however, using the former is more
desirable for machine learning. This is because for a system
of a fixed dimension D we can encode quadratically more
features in a mixed state than in a pure state. This approach
to measuring Euclidean distance between a pair of points in
space of dimension N ¼ D2 − 1 exhibits a reduced com-
plexity ofOðlogNÞ in comparison to the standard approach
of the complexity OðpolyNÞ. Optimizing the dependence

FIG. 4. Experimental results of the second power of the Hilbert-
Schmidt distanceD2

HS between (a) Bell states, (b) separable states.
The theoretical values are D2

HS ¼ 0 for the diagonal elements and
D2

HS ¼ 2 for the off-diagonal elements. The indices represent
spatial and polarization encoding, respectively (see Fig. 2).

(a)

(b)

FIG. 5. Experimentally obtained values ofD2
HS (a) between two

Werner states and (b) between Werner and Horodecki states for
various weight parameters (px, py) or (p, q) are represented by
corresponding light-shaded contours slightly shifted with respect
to the labeled black contours representing the theoretical values
of D2

HS. The vertical and horizontal axes represent polarization
and spatial encoding, respectively (see Fig. 2).
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of the complexity on the number of data points M is out of
the scope of this work. The obtained experimental results
are in good agreement with theoretical predictions. To
demonstrate the versatility of our approach we measured
HSD between assorted two-qubit states. The HSDs
between identical Bell states are sufficiently close to
theoretical values. On the other hand, distances between
orthogonal Bell states do not deviate from theoretical
values by more than 15%. This error is partially caused
by the linearization of Eq. (1) and by phase instability in the
relatively complex interferometer. Further, partial distin-
guishability between photons causes an imperfect bunching
that leads to partial impurities of the states, therefore,
increasing the error. However, this discrepancy is imple-
mentation specific and not a fundamental limit. To assess
the impact of measurement errors on the shape of two
clusters created using a k-means algorithm with and with-
out introducing a maximum error of 15% in distance
measurement we performed numerical simulations. The
initial sets of points were created using Gaussian distribu-
tions (see [41]). The clusters created for the range of
distances between the Gaussians varying from 0 to 6
standard deviations differ on average by 4% of the points.
We have obtained similar measurement results for the
separable states; however, the deviation from the theoretical
prediction is not as high due to the lower complexity of the
states. We have also interpolated the HSDs betweenWerner
states and betweenWerner and Horodecki states for various
values of the weight parameters. The results are in good
agreement with theoretical values represented by the
contours in Fig. 5. We believe that these results can
motivate subsequent research on the topic of quantum
channel characterization and quantum machine learning.
Especially in the latter, measuring distances between
multidimensional points efficiently can reduce the compu-
tational complexity of supervised and unsupervised
machine learning. Thus, our results can be inspiring for
near term quantum technologies which would exhibit
speedup in comparison to the best currently known
classical solutions. Our results are also a novel example
of applying mixed states for quantum information process-
ing. Usually working with mixed states is not desired, but
here it gives the possibility of encoding extra information as
the degree of coherence between the given two dimensions
of the density matrix.
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