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Synthetic spaces allow physicists to bypass constraints imposed by certain physical laws in experiments.
Here, we show that a synthetic torus, which consists of a ring trap in the real space and internal states of
ultracold atoms cyclically coupled by Laguerre-Gaussian Raman beams, could be threaded by a net
effective magnetic flux through its surface—an impossible mission in the real space. Such a synthetic Hall
torus gives rise to a periodic lattice in real dimensions, in which the periodicity of the density modulation of
atoms fractionalizes that of the Hamiltonian. Correspondingly, the energy spectrum is featured by multiple
bands grouping into clusters with nonsymmorphic-symmetry-protected band crossings in each cluster,
leading to swaps of wave packets in Bloch oscillations. Our scheme allows physicists to glue two synthetic
Hall tori such that localization may emerge in a quasicrystalline lattice. If the Laguerre-Gaussian Raman
beams and ring traps were replaced by linear Raman beams and ordinary traps, a synthetic Hall cylinder
could be realized and deliver many of the aforementioned phenomena.
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Spaces with nontrivial topologies provide quantum
systems unprecedented properties [1–7]. As a prototypical
space of a finite genus, the importance of a torus in modern
physics is more far reaching than applying periodic
boundary conditions (PBC) in theoretical calculations. It
plays a crucial role in quantum Hall physics. The ground
state of a fractional quantum Hall state becomes degenerate
on a torus or any surface with a finite genus [8]. Such
degeneracy, which is unavailable on a cylinder or a flat
space and defines the concept of the topological order lays
the foundation of topological quantum computation [9].
However, due to the absence of magnetic monopoles in
nature, it is impossible to generate a net magnetic flux
through a closed surface in the real space. The study of
quantum Hall states on a torus has eluded experiments
so far.
Ultracold atoms provide physicists a unique platform to

engineer Hamiltonians and allow physicists to achieve
many quantum Hall states unattainable in electronic sys-
tems [10], such as quantum Hall states of bosons and
quantum Hall states with high spins. Other than the typical
harmonic potentials, ring traps have been implemented in
an annular geometry [11,12]. Linear and Laguerre-
Gaussian (LG) Raman beams have been used to create
spin-momentum coupling and spin-angular momentum
coupling, respectively [13–17]. If one considers the internal
degree of freedom as a synthetic dimension, the spin-
momentum coupling gives rise to a synthetic magnetic field
in a two-dimensional plane [18,19]. Whereas experiments
have been focusing on open boundary conditions in the
synthetic dimension [20,21], there have been theoretical

proposals on creating a periodic or twisted boundary
condition [22–27]. However, few experiments has fulfilled
the requirements of these proposals [28,29].
We propose a simple scheme to realize a synthetic torus

penetrated by a net effective magnetic flux. Ultracold atoms
confined in a ring trap in the real space are subjected to
spin-angular momentum coupling induced by LG Raman
beams. Either hyperfine spins or nuclear spins could be
used to enable a cyclic coupling and form a loop in the
discrete synthetic dimension. Cyclic couplings have been
studied for different purposes, including realizing two-
dimensional spin-orbit coupling and creating Yang monop-
oles [30–32]. Here, we use spin-angular momentum cou-
pling to synthesize internal states and real dimensions into a
synthetic Hall torus. PBCs in both synthetic and real
dimensions deliver a torus. Spin-angular momentum cou-
pling produces finite effectivemagnetic fluxes penetrating its
toroidal surface, signifying the rise of a synthetic Hall torus.
Replacing Laguerre-Gaussian Raman beams by linear ones,
our scheme applies to ordinary traps with open boundary
conditions for creating synthetic Hall cylinders, which have
been realized by experiments recently [28,29].
We further unfold unique properties of synthetic Hall tori

and cylinders. Unlike previous works including optical
lattices in the real dimension [20,21,24,26–28], we con-
sider a continuous real space trap. Interestingly, periodic or
quasiperiodic lattices emerge in the continuous real dimen-
sion, as a result of PBC in the synthetic dimension. The
periodic lattice modulates the density of atoms with a
fractionalized periodicity of the Hamiltonian and a unique
band structure shows up. Energy bands form clusters with
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nonsymmorphic-symmetry-protected band crossings in
each cluster. Wave packets in each cluster swap with each
other in Bloch oscillations. Though each single synthetic
Hall torus or cylinder supports only extend states, once two
of them are glued together, quasiperiodic lattices may
emerge and lead to localized states in the real space.
Such “localization from gluing” demonstrates the power
of synthetic Hall tori or cylinders in accessing even more
complex synthetic spaces and intriguing quantum phenom-
ena there.
Proposed scheme and Hamiltonian.—We consider M

internal states in a real space ring trap. For alkali atoms,
theseM spins involves both F ¼ 1 and F ¼ 2, as shown in
Fig. 1(a). At weak magnetic fields, linear Zeeman splitting
dominates; thus a single pair of LG Raman beams simulta-
neously couples every consecutive state within each mani-
fold; microwave fields couple j1; 1i (j1;−1i) and j2; 2i
(j2;−2i). These eight states form a circle in the synthetic
dimension. Because of the opposite g factors betweenF ¼ 1
and F ¼ 2, a finite angular momentum transfer occurs once
an atom finishes the loop in the synthetic dimension. A net
effective magnetic flux emerges on the torus. Each hyperfine
spin state has multiple angular momenta.
The number of internal states are controllable. On the one

hand, at large magnetic fields, quadratic Zeeman splittings
become important, and fewer spins can be separated out from
the rest to form a smaller circle [26,28–30,32]. Note that
shrinking the synthetic dimension does not change any
results qualitatively, as fractional quantum Hall states can

be adiabatically connected to 1D charge-density waves [33].
Chiral edge currents in the quantumHall strips have alsobeen
observedusingonly three internal states [20,21].On the other
hand, using the 1S0 and 3P0 states of Sr87 [34], one could
cyclically couple up to 20 internal states.
Here, we consider nearest neighbors in the synthetic

dimension coupled by LG Raman beams. The spin flip
from the jth spin state to the jþ 1th one is thus accom-
panied by an angular momentum increase mj;jþ1, which is
the difference between the angular momenta carried by the
two LG beams. A microwave coupling then corresponds
to mj;jþ1 ¼ 0.
We define the position x ¼ ϕL=ð2πÞ and the momentum

p ¼ 2πm=L, where ϕ is the azimuthal angle and L is
the circumference of the real space ring. We also define
qj;jþ1 ¼ 2πmj;jþ1=L as the “momentum” transfer along the
azimuthal direction. The advantage of the notation is that
all results directly apply to a cylinder. In both the cylinder
and the torus, x represents the direction in the real
dimension. The Hamiltonian reads

H ¼
XM

j¼1

jψ jðxÞi
�
−

ℏ2

2m0

∂2
x þ ϵj

�
hψ jðxÞj

þ
XM

j¼1

ðΩj;jþ1eiqj;jþ1xjψ jþ1ðxÞihψ jðxÞj þ H:c:Þ; ð1Þ

where ψ jðxÞ denotes the spatial wave function for the jth
spin, ϵj the one (two) photon detuning in the microwave
(Raman) transition, Ωj;jþ1 the coupling strength between
the jth and the jþ 1th spin state, and ψMþ1ðxÞ ¼ ψ1ðxÞ.
Whereas our results are very general and do not require
tuning every single parameter arbitrarily, quadratic Zeeman
splitting could create uneven energy separations and each
pair of hyperfine spin states could be coupled by different
lasers. Thus, Ωj;jþ1 can be, in principle, tuned independ-
ently. The total phase accumulated after an atom finishes a
circle j → jþ 1 → jþ 2… → j − 1 → j, φðxÞ≡ eiQx is
finite and spatially dependent, whereQ≡P

M
j¼1 qj;jþ1. The

total synthetic magnetic flux on the surface of the torus per
unit length in the physical dimension is then proportional
to Q.
Nonsymmorphic symmetry and band structures.—

We start from commensurate momentum transfers, i.e.,
qj;jþ1 ¼ njqL, where nj are integers. For any coupling
strengths Ωj;jþ1, the reciprocal lattice vector qL determines
the periodicity of HðxÞ, HðxÞ ¼ H½xþ ð2π=qLÞ�. If one of
these couplings vanishes, the phases eiqj;jþ1 can be absorbed
to jψ jþ1ðxÞi, and any spin component in an eigenstate
contains a single plane wave. In contrast, when all
Ωj;jþ1 ≠ 0, the phases cannot be gauged away under such
PBC. A single spin component in any eigenstate contains
multiple plane waves and the densities form standing

FIG. 1. (a) Energy diagram for the hyperfine states and the laser
coupling scheme. Blue and green arrows represent the Raman
coupling. Bidirectional arrows represent microwave couplings.
(b) Simplified coupling diagram for three internal states coupled
by Raman beams. (c)–(d) Torus (cylinder) formed by three
cyclically coupled internal states in a real space ring trap. The
density oscillation is depicted as the fluctuation of the radius of
the torus or cylinder. Colored curves represent phases of the wave
function of each spin component.
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waves. The lattice in the real space is therefore an emergent
one from the PBC in the synthetic dimension.
The Bloch wave functions ψ⃗kðxÞ are simultaneous

eigenstates ofH and T̂ðdÞ [T̂ðdÞψ⃗kðxÞ ¼ eikdψ⃗kðxÞ], where
ψ⃗ðxÞ is an M-component wave function, k the quasimo-
mentum, d≡ 2π=qL the lattice spacing, and TðdÞ the
translation operator of distance d. We define the non-
symmorphic symmetry operator Ĝ as a combination of a
translation for a fraction of the lattice space Tð2π=QÞ in
the real dimension and a unitary transformation Us in the
synthetic direction,

x → xþ 2π

Q
; jψ j>1i → e

−ið2π=QÞ
P

j−1
j0¼1

qj0 ;j0þ1 jψ ji: ð2Þ

Again, it is understood that M þ 1 is equivalent to 1.
A simple example of the nonsymmorphic symmetry is
the glide-reflection symmetry, a translation for half of
the lattice spacing combined with a reflection in the
perpendicular direction, which has played an important
role in topological quantum matters [35–37]. Consider a
special case ϵj ¼ 0, Ωj;jþ1 ¼ Ω̄, and nj ¼ n̄; the synthetic
dimension becomes translational invariant in the real
dimension. Ĝ and its multiples, together with the trans-
lation in the synthetic dimension, then form the conven-
tional magnetic translation group [38]. In generic cases
where the synthetic dimension does not have translation
invariance, i.e., nonuniform ϵj, Ωj;jþ1, or nj. ½H; Ĝ� ¼ 0 is
still satisfied and signifies a nonsymmorphic symmetry.
We define n≡Q=qL ¼ P

M
j¼1 nj. Many physical quan-

tities depend on n; i.e., the properties of the system
crucially rely on how the synthetic magnetic field is
distributed on the surface of the torus, not just the total
flux. Applying Ĝ for n times is equivalent to a translation
in the physical dimension for one lattice spacing,
Ĝnψ⃗kðxÞ ¼ eikdψ⃗kðxÞ. Thus,

Ĝψ⃗kðxÞ ¼ csψ⃗kðxÞ; cs ¼ ei½ðkd=nÞþð2sπ=nÞ�; ð3Þ

where s ¼ 1; 2;…; n − 1; n. Equation (3) shows that, as the
quasimomentum k changes by a reciprocal lattice vector qL,
the eigenvalue of Ĝ changes by e2iπ=n; i.e., the sth
eigenvalue becomes the sþ 1 one. Meanwhile, ψ⃗kðxÞ ¼
ψ⃗kþqðxÞ is satisfied. Thus, we conclude that bands must
form clusters, each of which contains n bands. These n
bands are the n eigenstates of the operator Ĝ with the sth
eigenvalue cs, and intersect with each other within the
Brillouin zone (BZ).
We solve H in Eq. (1) using plane-wave expansions.

The band structure fully agrees with the prediction from
the above symmetry considerations. Figure 2(a) shows the
energy bands when M ¼ 3, q1;2 ¼ q2;3 ¼ q3;1 ¼ q, and
coupling strength Ω1;2 ¼ 1.2ER, Ω2;3 ¼ 1.8ER, and Ω3;1 ¼
1.5ER, where ER ¼ ℏ2Q2=2m0 is the recoil energy defined

by Q. Here, the reciprocal lattice vector qL ¼ q and
n ¼ Q=qL ¼ 3. The cylindrical or toroidal surface is
penetrated by a uniform flux. Thus, three bands exist in
each cluster. The eigenstate of the sth band is

ψ⃗kðxÞ ¼ eiðkþsqÞx(u1kðxÞ; u2kðxÞ; u3kðxÞ)T;

ujkðxÞ ¼ eiðj−1Þqx
X∞

l¼−∞
cjlðkÞeilQx; ð4Þ

where ujkðxÞ is the periodic Bloch wave function of the jth
spin state, l an integer, and cjlðkÞ determined by Eq. (1).
The density of the jth spin state, ρjkðxÞ≡ jujkðxÞj2 satisfies

ρjkðxÞ ¼ ρjk

�
xþ 2π

Q

�
¼ ρjk

�
xþ d

3

�
: ð5Þ

The total density ρðxÞ ¼ P
j ρ

j
kðxÞ, by definition, also

satisfies Eq. (5) [39]. Despite the continuous real dimen-
sion, the density of atoms oscillates with a period only 1=3
of that of the Hamiltonian, as shown in Figs. 1(c)–1(d). In
contrast, the relative phase between u2kðxÞ [u3kðxÞ] and u1kðxÞ
has a periodicity of d, as shown by the colored curves in
Figs. 1(c)–1(d). As previously discussed, such results
crucially depend on the PBC. Both periodic density and
phase oscillations vanish once the synthetic dimension has
an open boundary condition.
Swapping wave packets in Bloch oscillations.—When a

constant force is applied, a wave packet in the momentum
space experiences a Bloch oscillation, which has exactly
the same period of the Hamiltonian in an ordinary band
structure. In contrast, the period of the Bloch oscillation
here is given by 3q, tripling the reciprocal lattice vector.
Because of the presence of band crossings, a wave packet
does not return to the original band after the momentum
changes by q. Instead, it swaps with another wave packet
from a different band.
The significance of such Bloch oscillations here is that

it traces the Wilson lines, a path-ordered integral of

(a) (b)

(c)

FIG. 2. Band structures when q1;2: q2;3: q3;1 ¼ 1: 1: 1(a) and
q1;2: q2;3: q3;1 ¼ 1: 1: 2 (b). (c) Bloch oscillation for (a). Vertical
lines represent the boundaries of the BZ.
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non-Abeliean Berry connections in the momentum space
[40,41]. Because of the nonsymmorphic-symmetry-pro-
tected band crossings, Abelian Berry connections no longer
apply when studying topological properties of the band
structure. Non-Abelian Berry connections and the Wilson
lines characterize how a quantum state changes to a
different one while the Hamiltonian returns to the original
one [42,43], a prototypical non-Abelian operation. This is
precisely what we see from Fig. 2(c). If we label the bands
as 1,2,3 from bottom to top based on the energies, the green
wave packet initially at band-1 moves to band-3, mean-
while the red (black) one initially at band-2 (band-3)
moves to band-1 (band-2) when Δk ¼ q [44]. When
Δk ¼ Q ¼ 3q, these three wave packets swap with each
other for six times, as shown in Fig. 2(c).
The above discussions can be directly generalized to

other choices of fqj;jþ1g. If q1;2 ¼ q2;3 ¼ 3
4
q, q3;1 ¼ 3

2
q,

though the total momentum transferred, Q, is still 3q, the
same as the previously discussed case, qL becomes 3q=4
and n ¼ 4. One third of the surface has a larger magnetic
flux than the remaining region [44], and a cluster consists
of four bands [Fig. 2(b)]. Changing the value of some of the
wave vectors is equivalent to redistributing the magnetic
flux on the surface, and leads to distinct band structures. We
emphasize that the total number of states of the system
remains unchanged. The change of the number of bands is
associated with the change of the BZ. In this example, the
reciprocal lattice vector q0L become 3

4
q. Shrinking the size

of the BZ then leads to an increase in the number of bands
in a cluster.
Quasiperiodic lattices.—If qj;jþ1 are incommensurate,

e.g., q1;2∶q2;3∶ � � � ∶qM;1 ¼ 1∶1∶ � � � ∶γ, where γ ¼ ½ð ffiffiffi
5

p
−

1Þ=2�, a peculiar quasiperiodic lattice arises: certain quan-
tities have well-defined periodicities but others do not. For
example, Eqs. (4) hold for a generic fqj;jþ1g whenM ¼ 3.
Though H in Eq. (1) is aperiodic, the density of each spin
still satisfies ρjkðxÞ ¼ ρjk½xþ ð2π=QÞ�. The wave function
of each spin component is still extended, as its plane
wave expansion only includes multiples of Q. In contrast,
the relative phases between different spin components
are spatially variant and are not commensurate. Thus,
the wave function ψkðxÞ is aperiodic in the real dimension.
Defining a pseudospin-1, Sμ ¼ P

j;j0 u
j�
k ðxÞF j;j0

μ uj
0
k ðxÞ,

where j; j0 ¼ 1, 2, 3, F j;j0
μ are the spin-1 Pauli matrices,

and μ ¼ x, y, z. SzðxÞ is periodic, SzðxÞ ¼ Szðxþ 2π=QÞ,
but SxðxÞ and SyðxÞ do not have well defined periods, as
shown in Fig. 3(a).
On a cylinder, there is no restriction on the choice of

qj;jþ1. In contrast, an irrational ratio qj;jþ1=qj0;j0þ1 is not
allowed on a torus, as the PBC in the real dimension require
that all momentum scales are multiples of 2π=L.
Nevertheless, any irrational number can be approached
by the ratio of two integers with increasing the integers’
values. For instance, γ can be approximated by

γα ¼ aα−1=aα, where faαg is the Fibonacci series
1; 1; 2; 3; 5…, with increased accuracy. When the approxi-
mation order α increases, the periodicity of Sx;yðxÞ
increases. γα with a small α well reproduces the result
for a small x and a large γ.
Localization by gluing.—Our scheme can be implemented

to access more complex synthetic spaces. For instance,
adding extra couplings to the synthetic dimension is equiv-
alent to gluing multiple tori or cylinders. Figure 3(b) shows
that two tori or cylinders withM ¼ 3 can be glued to a single
onewithM ¼ 4. In the real space, it is difficult to realize such
gluing, as it is required to identify certain parts of two
different objects. Using the synthetic dimension, adding an
additional tunneling through the interior of single tori or
cylinder with M ¼ 4, Ω0 ¼ Ω2;3, immediately realizes this
gluing and delivers a system with a different topology.
Though each single torus or cylinder supports only extended
eigenstates, after gluing them together, eigenstates at low
energies could become localized, as shown in Fig. 3(c) [45].
The wave function of a single spin component now includes
multiple momentum scales, q1;2, and q4;3, unlike a single
torus or cylinder case where only Q is relevant. The
interference of plane waves with incommensurate wave
vectors could thus potentially localize the wave function.
To quantitatively characterize the localization, we com-

pute the width of the lowest band as a function of Ω0. It has
been shown that the ground bandwidth scales with a−2α for
extended states, and decays much faster for localized states
[46,47]. Here, the scaled bandwidth almost vanishes at an
intermediate value ofΩ0, where eigenstates are localized, as
shown in Fig. 4. When Ω0 is very small, the wave function
is still extended, similar to a single torus without Ω0. For
large Ω0, dominating contributions to the wave function

(a)

(b) (c)
1

23

23
4

1

23

4

(x
)

q1,2q3,1

q2,4q4,3

FIG. 3. (a) Spin polarization along the x and z directions as a
function of x. (b) Schematic of the cross sections of two tori or
cylinders when they are glued together. (c) Total density of the
ground eigenstate at zero quasimomentum before (dashed line,
only the top blue torus or cylinder is shown) and after (solid line)
the gluing. q1;2 ¼ q3;1 ¼ q, q2;3 ¼ 0, q2;4 ¼ q4;3 ¼ γq, and all
couplings Ωj;j0 are 2Er, where Er ¼ ℏ2q2=2m0 is the recoil
energy defined by q. γ8 ¼ 13=21 has been used as an approxi-
mation of γ ¼ ð ffiffiffi

5
p

− 1Þ=2.
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come from only two hyperfine spin states [2 and 3 in
Fig. 3(b)] such that the incommensurate wave vectors
are no longer relevant and the wave function is still
extended.
The localization can also be characterized by the

expansion of an initially localized wave packet with a
width σ0 in real space. We consider a Gaussian wave packet
as the initial state. For small or large Ω0, where the
eigenstates at low energies are delocalized, the width of
the wave packet σ increases quickly. In contrast, σ grows
much slower in the localized regime. To further consider
interaction effects, we numerically solve a time-dependent
Gross-Pitaevskii equation,

iℏ
∂ψ⃗ðxÞ
∂t ¼ ðĤ þ gρÞψ⃗ðxÞ; ð6Þ

where g is the interaction strength. We find that a weak
repulsive (attractive) interaction slightly enhances (sup-
presses) the dynamics. In addition, we have considered the
ground state of interacting bosons in the trap. The main
conclusions remain unchanged [44].
We have shown that atom-laser interactions allow

physicists to synthesize Hall tori and cylinders hosting
intriguing quantum phenomena in the emergent periodic
and quasiperiodic lattices. We hope that our results will
stimulate more works on synthetic spaces so as to explore
physics that are not easy to access in conventional traps.
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