
 

T Operator Bounds on Angle-Integrated Absorption and Thermal Radiation
for Arbitrary Objects

Sean Molesky ,1 Weiliang Jin ,2 Prashanth S. Venkataram,1 and Alejandro W. Rodriguez1,*
1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
2Department of Electrical Engineering, Standford University, Stanford, California 94305, USA

(Received 11 July 2019; published 20 December 2019)

We derive fundamental per-channel bounds on angle-integrated absorption and thermal radiation for
arbitrarily structured bodies—for any given material susceptibility and bounding region—that simulta-
neously encode both the per-volume limit on polarization set by passivity and geometric constraints on
radiative efficiencies set by finite object sizes through the scattering T operator.We then analyze these bounds
in two practical settings, comparing against prior limits as well as near optimal structures discovered through
topology optimization. Principally, we show that the bounds properly capture the physically observed
transition from the volume scaling of absorptivity seen in deeply subwavelength objects (nanoparticle radius
or thin film thickness) to the area scaling of absorptivity seen in ray optics (blackbody limits).
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Motivated by the increasing control of light offered by
micro- and nanoscale structuring [1,2], impetus to find
bounds analogous to the blackbody limit for geometries that
violate the assumptions of ray optics (nanoparticles [3], thin
films [4], photonic crystals [5,6], etc.) has steadily grownover
the past few decades. It is now well established that the
absorption (radiative thermal emission) cross sections of a
compact object can be much greater than its geometric area
[7–12] (“super-Planckian” emission), and that deeply sub-
wavelength films can achieve near unity absorptivity via
surface texturing [13,14]. Limits applicable to all length
scales and materials could both provide insight into these
representative phenomena and guide efforts in related appli-
cation areas such as integrated and metaoptics [15–17],
photovoltaics [18–21], and photon sources [22–24].
Development of bounds for arbitrary objects has pri-

marily followed two overarching strategies: modal decom-
positions based on quasinormal, Fourier, and/or multipole
expansions [25–33], relating absorption cross section to the
number of excitable optical modes (channels), or material
bounds, utilizing energy [34,35] and/or spectral sum rules
[36–42] to constrain achievable polarization response.
Separately, each of these approaches present challenges
for photonic design. Modal decompositions incorporate the
specific size and shape characteristics of a body through
expansion coefficients, and hence, inherently, require some
enumeration and characterization of the participating
modes to determine the range of values these coefficients
can take [26,39,40]. Although fundamental considerations
(transparency, energy, size, etc.) can and have been used in
this regard [28,33,41,43], such cutoffs have yet to tightly
bound potential coefficient values for arbitrary compact
geometries, particularly when applied to metallic nano-
particles and antennas [27,35,44]. Conversely, material

bounds set by intrinsic dissipation naturally reproduce
the volumetric scaling of absorptivity characteristic of
deeply subwavelength objects (and are highly accurate
for the special case of weak polarizability in this regime
[35]). However, because such approaches intrinsically
suppose an optimally large response field existing at all
points within an arbitrary object for any incident field, the
same volumetric scaling persists for all length scales.
Consequently, material bounds rapidly become too loose
beyond quasistatic settings, yielding unphysical divergen-
ces with both increasing object size and material response.
In this Letter, we derive bounds on thermal radiation and

absorption that combine these two approaches, linking the
impact of material responsewith the influence of an object’s
geometry through the scattering T operator. This leads to a
per-channel limit on integrated absorption capturing both
material and radiative losses through the singular values
of the imaginary part of the vacuum Green function. The
result is applicable to objects of any size, exhibiting a
smooth transition in absorptivity from the volume scaling
achievable in the quasistatic (deeply subwavelength) regime
to the area scaling limit of macroscopic ray optics. Further,
the bounds always asymptotically approach the ray optics
limit when all characteristic lengths are large and diverge
sublogarithmically (rather than linearly) with material qual-
ity for objects of finite extent, significantly reducing cross-
section limits for typical optical media even when all
characteristic lengths are small. Throughout, we compare
the present results to prior bounds as well as structures
discovered using topology optimization, realizing a variety
of examples (metallic and dielectric) that nearly achieve the
predicted limits.
Derivation.—From the relations of scattering theory,

both the power scattered from an incident field (jEinci)
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and the thermal radiation emitted at a temperature T can be
expressed in terms of the scattering T operator of an object
and the vacuum Green function Gvac [45] as

PsctðωÞ ¼
ko
2Z

hEincjT†Im½Gvac�T jEinci

¼ ko
2Z

hEincjIm½T � − T†Im½V−1†�T jEinci ð1Þ

and

Hðω; TÞ ¼ Πðω; TÞΦðωÞ;

Φ ¼ 2

π
TrfIm½Gvac�ðIm½T � − T †Im½Gvac�TÞg: ð2Þ

Here, ω is the angular frequency, ko ¼ 2π=λ is the wave
number, Z is the impedance of free space, ΠðωÞ ¼
ℏω=½exp ðβℏωÞ − 1� with ðβ ¼ 1=kBTÞ is the Planck
energy of a harmonic oscillator, Tr½� � �� denotes the trace,
Im½T � ¼ ðT − T �Þ=2i, and, by Kirchhoff’s law of thermal
radiation,Φ is the object’s angle-integrated absorption [46].
(A synopsis of scattering formalism, along with a deriva-
tion of Eq. (2), is provided in Supplemental Material [47] .)
For a passive object, scattered power must be positive for
any incident field. As such, Eq. (1) simultaneously dictates
that all singular values of the T operator must be smaller
than the material figure of merit ζ,

kTk ≤ ζ ¼ j χðωÞj2
Im½ χðωÞ� ; ð3Þ

which was similarly derived in Ref. [35] for polarization
fields, and that Im½T � is positive definite.
As Im½Gvac� is real-symmetric positive definite, it can be

expressed via a singular value decomposition as

Im½Gvac� ¼
X
i

ρijqiihqij; ð4Þ

where, as supported by our later analysis, each ρi (eigen-
value) can be equated to the outgoing radiative flux of the
ith mode—the ith radiative efficacy of the domain. The set
fρig plays an analogous role to the coupling coefficients
fgijg used by Miller in setting limits on far-field optical
communication [41]. Consider Eq. (2) using this expansion,
Φ ¼ ð2=πÞ Pi ρiIm½hqijT jqii� − ρ2i jhqijT jqiij2 − ð2=πÞP

fði;jÞji≠jg ρiρjjhqijT jqjij2. Now, take Topt to be a general
operator described by the properties ðT optÞT ¼ Topt (reci-
procity), kT optk ≤ ζ (passivity), and Im½T opt� positive def-
inite (passivity), ignoring all other physical constraints that
any true T operator must satisfy. In this context, two
characteristics of any maxima of Φ are clear. First, as
ð∀ i; jÞρiρjjhqijToptjqjij2 ≥ 0, the appearance of any cross
terms (hqijToptjqji) will always decrease Φ. Therefore, to
maximize Φ, a general operator Topt must be diagonalized
in the basis of Im½Gvac�, Eq. (4). Second, the complex phase

of hqijT optjqii only influences the first (positive) piece
of the sum, and so the value of Φ peaks when ð∀ iÞ
atanðIm½hqijT jqii�=Re½hqijT jqii�Þ ¼ π=2. Together, these
two considerations show that achievable values of Φ are
bounded by taking T opt to be diagonalized by Eq. (4) with
purely imaginary eigenvalues: T opt ¼

P
i iτijqiihqij with

ð∀ iÞ τi ∈ ½0; ζ�. As such,

Φopt ¼
2

π

X
i

τiρi − ðτiρiÞ2: ð5Þ

and maximizing the contribution of each τi yields

Φopt ¼
2

π

X
i

�
1=4 ðζρi ≥ 1=2Þ
ζρi − ðζρiÞ2 else:

ð6Þ

That is, based on the criterion ζρi ≥ 1=2, each channel in
Eq. (6) produces either the Landauer limited contribution of
1=4 [48] or the material limited ζρi − ðζρiÞ2.
Interpretation.—In terms of the T operator, the total

power extracted from any incident field jEinci by an
object is Pext ¼ kohEincjIm½T �jEinci=ð2ZÞ. Comparing
with Eqs. (1) and (2), Φ thus amounts to the difference
of the extracted (Im½T �) and scattered (T †Im½Gvac�T ) power
for free-space states. The separation of these two forms
persists throughout the derivation of the bounds, represent-
ing the linear and quadratic terms of Eq. (5). Φopt results
from their connected physics.
In real space, TrfIm½Gvac�g ¼ P

i ρi is the integral of the
local density of free-space states over the domain of the
object. Following Eq. (6), the total power that can be
extracted by an object, the first term of Eq. (2), is hence
bounded by its ability to interact with radiative modes,
TrfIm½T �Im½Gvac�g ¼ P

i τiρi, which is maximized (inde-
pendently) under complete saturation of material response,
ð∀ iÞ τi ¼ ζ. Relatedly, this form is also the result of
applying the per-volume (shape independent) optical
response limit of Ref. [35] to integrated absorption, and
is similar to the light trapping bound of Ref. [34]. Because
of these connections with prior work,

ΦqsðωÞ ¼
X
i

ζρi ¼ ζ

Z
V
drIm½Gvacðr; rÞ� ð7Þ

serves as a useful comparison for Φopt, and is subsequently
referred to as the quasistatic bound. This name is chosen as
Eq. (7) follows from the assumption that the interaction of
the object with any incident field is identically material
limited, which can occur in quasistatic settings. This does
not mean that Φqs is valid only under the quasistatic
approximation. Like Φopt, Φqs is a mathematical bound
derived fromMaxwell’s equations, althoughΦopt ≤ Φqs for
any selection of parameters.
In Eqs. (5) and (6) this extracted power contribution

is suppressed by scattering (radiative) losses, which are
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captured in the quadratic term in Eq. (2) as the coupling of
the polarization currents generated within an object back to
free-space modes: originating through the operator
T†Im½Gvac�T , each τi represents the ability of the object
to convert a given field into a current, and each radiative
efficacy ρi the conversion of a current into outgoing
radiative flux. Equivalently, the presence of strong polari-
zation currents, necessary for strong per-volume absorp-
tion, leads to radiative losses, and these losses limit possible
absorption. If ζρi > 1=2, mirroring the observed depend-
encies of absorption (∝ V) and scattering (∝ V2) seen in
highly subwavelength metallic antennas [26,30], the
growth of radiative losses with increasing τi can potentially
surpass the growth of the extracted power, inducing
saturation. As both processes are rooted in the same
conversion between radiative fields and polarization cur-
rents, this critical coupling occurs at the compelling value
of τiρi ¼ 1=2 [61,62], the probability of a maximally
entropic Bernoulli process, resulting in the Landauer limit
value of Φopt ¼ 1=4.
Analysis.—The practical usefulness of Eq. (6) stems

from its favorable mathematical properties. Namely, Eq. (6)
monotonically increases with ζ or any ρi, and, as proved in
Supplemental Material [47], each ρi increases if the object
grows (domain monotonicity). This allows us to freely
decouple any true object from an imagined encompassing
region of space (bounding domain). A mismatch between
the domain of the object and the domain of Im½Gvac� must
technically reduce kTk below ζ, but without any modifi-
cation Eq. (6) remains an upper bound on Φ. That is, the
result of Eq. (6) for any particular bounding domain is
applicable to any object that can be enclosed (as well as any
subdomain).
The procedure for calculating Φopt is straightforward

for any bounding geometry (e.g., wires, disks, spheres,
extended films, stars, disconnected patches, etc.). Precisely,
the set of singular values fρig of the domain can always be
computed by forming a real-space matrix representation
of Im½Gvac�,

Im½Gvac�ðrÞ ¼ k3o
4πr

��
sinðrÞ þ cosðrÞ

r
−
sinðrÞ
r2

�
Ī

−
�
sinðrÞ þ 3 cosðrÞ

r
−
3 sinðrÞ

r2

�
r̂ ⊗ r̂

�
;

ð8Þ

with every rmultiplied by a hidden ko, and then performing
a singular value decomposition of the result [49,63]. Here,
to facilitate further investigation, we will focus on the high
symmetry case of a ball where semianalytic evaluation is
manageable (expressions for films, as well as minor addi-
tional details, are given in Supplemental Material [47]).
Nevertheless, we stress that determining Φopt for domains

lacking symmetry does not raise any meaningful computa-
tionally difficulties.
For this geometry two types of singular values arise:

ρð1Þl ¼ πR2

4

�
lþ 1

2lþ 1
½J2l−1=2ðRÞ − Jlþ1=2ðRÞJl−3=2ðRÞ�

þ l
2lþ 1

½J2lþ3=2ðRÞ − Jlþ1=2ðRÞJlþ5=2ðRÞ�
�
;

ρð2Þl ¼ πR2

4
½J2lþ1=2ðRÞ − Jl−1=2ðRÞJlþ3=2ðRÞ�; ð9Þ

whereJlð−Þ is thelthBessel functionof the first kindwith an
additional factor of 2π included in its argument, each l
(spherical harmonic) indexhas amultiplicity of ð2lþ 1Þ, and
R is the radius of the ball normalized by the wavelength.
Using standard properties of Bessel functions, it can be
shown that for values ofR ≫ l, each of these singular values
tends to the asymptote 2π2R, and that for any combination of

arguments ρð1Þl < πðl þ 1ÞðπRÞ2lþ1=½2Γ2ðl þ 3=2Þ� þ
2πlðπRÞ2lþ5=½ð2l þ 5Þð2l þ 3ÞΓ2ðl þ 5=2Þ� and

ρð2Þl < 2πðπRÞ2lþ3=½ð2l þ 3ÞΓ2ðl þ 3=2Þ� (asymptoti-
cally approached for small values of R). These forms
reveal two prescient general features. First, in the limit of
small domains (R ≪ 1), with “small” being determined by
the value of ζ, only the first singular value of the first type
contributes, and this triply degenerate (dipole) mode is
responsible for the initial volume scaling necessitated by
the physical meaning of the bounds. Second, the radial
growth of the singular values shows that the saturation
condition (impact of radiative losses) plays a major role in
limiting radiative thermal emission and integrated absorp-
tion in wavelength scale volumes. [For ζ ¼ 106, Fig. 1(a),
radiative losses lead to order-of-magnitude deviations of
Φopt from Φqs beyond R ≈ 0.003λ.] As visually confirmed
by Fig. 1(a), as the domain grows, an increasing number of
channels (multipoles) saturate, causing “steps” to appear in
Φopt, and these steps lead to successively larger deviation
with Φqs that ultimately regularize the initial volumetric
scaling. Results for films, Fig. 1(b), are qualitatively
similar. However, since the domain is infinite, the steps
associated with saturation are now blended into a con-
tinuum, and the large characteristic size limit is approached
from below rather than above. From a practical perspective,
the fact that Φopt can achieve near ideal absorptivity for
very small film thickness and moderate values of ζ is quite
remarkable, a finding that is tacitly supported by a number
of recent studies in 2D materials and metasurfaces [64–67].
Crucially, in either case, for any value of ζ,Φopt asymptotes
to a geometric perfect absorber (the blackbody limit).
The asymptotic behavior of the singular values also

reveals general characteristics of the dependence of Φopt on
the material figure of merit ζ. Applying Stirling’s approxi-
mation to the bounding expressions given above, for
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ðl ≫ eπRÞ we have ρð2Þl ≈ ðeπR=lÞ2lþ1=4 and ρð1Þl ≈
ðeπR=lÞ2lþ3=2, to arbitrary accuracy as l becomes large.

Fix R, and suppose that ζ ¼ ρð2Þk (ρð1Þk is analogous). Using
the fact that eπR=ðkþ lÞ < eπR=k, the remaining (unsatu-
rated) linear contribution of Φopt is then bounded by
9ðeπRÞ3=f4½k2 − ðeπRÞ2�g. Hence, as ζ saturates increas-
ingly higher spherical harmonics, the contribution of the
remaining unsaturated harmonics becomes increasingly
small compared to the contribution of the newly saturated
harmonic, ≈ð2kþ 1Þ=4. But, saturation of the lth singular
value (in the large l limit) requires

ln

�
ζ

2

�
≥ ð2lþ 1Þ ln

�
l

eπR

�
; ð10Þ

which has a sublogarithmic dependence between l and ζ.
Because of domain monotonicity, the above material
scaling result for a ball is applicable to all compact (finite
sized) objects.
This bound on material quality scaling is well matched to

the features of the Φopt curves in Fig. 1(a). Once the radius
has surpassed ≈λ, geometric increases in ζ (×102) produce
relatively minute changes in the bounds. The same behav-
ior also appears for smaller radii at larger values of ζ, but
this range is not of great practical relevance since materials
with ζ surpassing ≈108 are quite rare. For instance, in the
optical to infrared, ω ∈ ð0.5–15Þ μm, ζðωÞ has a peak
value of approximately 1.7 × 103 for gold, 2.4 × 103

for tungsten, 2.2 × 104 for silicon carbide, 6.8 × 109 for
silicon, 3.3 × 107 for gallium arsenide, and 5.9 × 107 for
gallium phosphide [68].
Optimizations.—Case evidence for the tightness of

Eq. (6) is presented in Fig. 2. Using a gradient topology
optimization algorithm [2,50], see Supplemental Material

for details [47], structures nearly achieving Φopt have
been discovered for two widely different domain sizes
(R ¼ 0.05λ and R ¼ 0.5λ) and a variety of metallic and
dielectric susceptibilities. In Fig. 2, these media are
grouped by imaginary susceptibility, corresponding to four
different values of Im½ χ�, f0.5; 1; 2; 4g, with the remaining

FIG. 2. Comparison of bounds with geometries discovered by
inverse design. Absorptivity (Φ over area A) of structures
discovered using gradient topology optimization for a variety
of metallic (a) and dielectric (b) materials characterized by the
material figure of merit ζ ¼ j χj2=Im½ χ�. (See text for more
information.) For comparison, the bounds Φopt [Eq. (6)] and
Φqs [Eq. (7)] are also depicted. In (a), all structures are bound by a
ball of radius R ¼ 0.05λ. For (b), the confining domain is a ball of
R ¼ 0.5λ. The inset provides a visualization of the structure
(exterior and planar cut) for the rightmost green square. The
observation that optimized structures come within factors of unity
of Φopt provides case evidence of the tightness of Eq. (6).

FIG. 1. Bounds on angle-integrated absorption and thermal radiation for arbitrarily structured bodies enclosed within compact and
extended domains. Absorptivity (Φ normalized by area A) bounds Φopt (orange lines) and Φqs (purple lines), for a range of
ζ ¼ j χj2=Im½ χ� at a fixed wavelength λ. These quantities are shown as a function of the wavelength normalized radius R of an enclosing
sphere (a) and thickness h of a semi-infinite film (b). Schematics of each setting are included as insets. Even for small characteristic
lengths (fR; hg ≤ 0.1λ), Φopt is orders of magnitude smaller than Φqs.
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variation in ζ occurring due to Re½ χ�. Explicit values of
Re½ χ� are given for circled points, providing a sense of the
range considered. As was previously remarked by Miller
et al. [35], Φqs is attained for a plane wave polarized along
the axis of an ellipsoidal metallic nanoparticle, given a
properly chosen aspect ratio. For small values of ζ this ratio
is near unity and resonant metallic structures (Re½ χ� ≈ −3)
matching both bounds are easily discovered. As ζ moves to
moderate values, the aspect ratio required for an ellipsoidal
particle to match Φqs becomes increasingly extreme.
Because of our chosen spherical boundary, discovered
structures begin to deviate considerably from Φqs, but
continue to come within a factor of 2 ofΦopt up to ζ ¼ 103.
Past this point, numerical issues impede our present
algorithms and it remains to be seen how much of the
roughly order-of-magnitude headroom allowed by Φopt is
accessible.
Results for the larger domain, Fig. 2(b), show similarly

good agreement. An example structure is depicted in the
right-hand inset (full view and planar cut), corresponding to
the rightmost green square in the plot. Comparing with the
assumptions made in deriving Eq. (6), the T operator for
this structure ( χ ¼ 20þ 4i, Φ ¼ 0.60 Φopt) is indeed
found to be nearly diagonal in the basis of Im½Gvac� and
has almost completely imaginary eigenvalues (for support-
ing data, see Supplemental Material [47]).
Remarks.—There are a few points that should be

considered when using Eq. (6), or comparing to prior
literature. First, Φopt is a bound on thermal emission and
integrated absorption for a given domain and ζ factor. By
choosing different geometries and material parameters,
Eq. (6) can be applied to any desired context, but the
confining volume is an essential feature. Second, there is no
universal guarantee of tightness. Beyond the demonstrated
agreement of the bounds with known quasistatic and ray
optics asymptotics, the only a priori guarantee is domain
monotonicity; there are likely volumes and material param-
eters where the value of Φopt will be larger than the true Φ
of any practical structure. Next, while we have only
considered single wavelengths, there is no reason the
bounds cannot be applied to finite frequency ranges. The
derivation ofΦopt presented above does not incorporate any
spectral sum rules (derived from causality), such as the fact
that Topt should obey Kramers-Kronig dispersion relations,
but for resonant absorption or thermal emission simply
multiplying the bound by the width of the resonance should
not produce a substantially looser bound than Φopt at the
peak wavelength. (As an expedient, taking Φopt to be the
peak value of a Lorentzian function of width Δω ¼
ωIm χ=j χj is likely a fair approximation.) Finally, as
suggested in the introduction, Φopt can be interpreted as
the extension of prior multipole analysis [25–33] or
communication limits [37,38], to general domains with
the crucial addition that an upper bound is set on the

number modes which may contribute through the pseudo-
rank of the imaginary part of the vacuum Green function
(Im½Gvac�) and the material figure of merit (ζ), Eq. (3). We
foresee this rank revealing capability potentially providing
a number of benefits for future practical design and
optimization. We also note that much of what has been
developed in this Letter is applicable not only to general-
ized electromagnetic scattering (for incident plane waves or
dipolar emitters with applications to solar cells, light-
emitting diodes, and single-photon emitters) but also to
quantum mechanics, acoustics, and other wave physics.
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