
 

Effect of Nonlocal Correlations on the Electronic Structure of LiFeAs

Karim Zantout ,1,* Steffen Backes,2 and Roser Valentí1
1Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany

2CPHT, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France

(Received 3 July 2019; published 16 December 2019; corrected 17 November 2020)

We investigate the role of nonlocal correlations in LiFeAs by exploring an ab initio–derived multiorbital
Hubbard model for LiFeAs via the two-particle self-consistent (TPSC) approach. The multiorbital
formulation of TPSC approximates the irreducible interaction vertex to be an orbital-dependent constant,
which is self-consistently determined from local spin and charge sum rules. Within this approach, we
disentangle the contribution of local and nonlocal correlations in LiFeAs and show that in the local
approximation one recovers the dynamical mean field theory result. The comparison of our theoretical
results to most recent angular-resolved photoemission spectroscopy and de Haas–van Alphen data shows
that nonlocal correlations in LiFeAs are decisive to describe the measured spectral function Aðk⃗;ωÞ, Fermi
surface, and scattering rates. These findings underline the importance of nonlocal correlations and
benchmark different theoretical approaches for iron-based superconductors.
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Introduction.—The nature of the electronic structure in
iron-based superconductors has been intensely scrutinized
since their discovery in 2008 [1,2]. While ab initio density
functional theory (DFT) calculations can provide a quali-
tative understanding of their band structure and Fermi
surface [3–5], it soon became evident that correlation
effects originating from the strong local Coulomb repulsion
on the Fe atoms are responsible for many experimental
findings such as large effective masses, Fermi surface
renormalization, finite lifetimes, or transfer of spectral
weight to high binding energies [6–20]. The combined
DFT with dynamical mean field theory (DFTþ DMFT)
method, which approximates the electronic self-energy to
be local in space and thus includes frequency- and orbital-
dependent local effects of electronic correlations, has been
very successful in capturing many of these observations.
Some examples are orbital-dependent correlations, inco-
herence properties, and Fermi surface renormalization
[10–18,20–22]. However, the single-site DMFT cannot
account for possible momentum-dependent correlation
effects such as relative band shifts in opposite directions
of, respectively, hole bands centered at Γ and electron
bands centered at the Brillouin zone edge M (the so-called
“blueshift-redshift”) in a large class of iron-based super-
conductors [23–27], or the recently reported [28] possible
momentum-dependent scattering rates in angular-resolved
photoemission spectroscopy (ARPES) measurements of
LiFeAs. Some of these effects have been suggested to
play an important role in the superconducting pairing
mechanism [24,29–31] as well.
Consideration of momentum dependence in the self-

energy in real materials’ calculations are scarce but
promising [32–38], showing, for instance, effects of

bandwidth widening and momentum-dependent band shifts
in the systems studied [33,35,37]. Here we explore this
dependence by considering an approach where spin fluc-
tuations play the dominant role and it allows both a
description of local and nonlocal correlations on an equal
footing.
The purpose of this work is twofold. (i) We first

introduce the multiorbital formulation of the two-particle
self-consistent (TPSC) approach originally conceived for
the single-orbital Hubbard model [39], which provides
momentum- and frequency- dependent self-energies in the
intermediate coupling regime. (ii) We apply the method to
the iron-based superconductor LiFeAs.
We find that the momentum dependence obtained within

the TPSC approach introduces drastic changes to the
LiFeAs Fermi surface and band structure with respect to
DFT results. First, the innermost hole pocket centered
at Γ is shifted below the Fermi energy EF as
de Haas–van Alphen (dHvA) and ARPES [26,40] mea-
surements already suggested. Second, we find a large
accumulation of incoherent spectral weight around the Γ
point, as observed in ARPES [24–26,28,30]. Third, the
relative blueshift-redshift of the bands centered at Γ andM,
respectively [24,25], is properly described. Fourth, the
momentum-averaged TPSC results agree with the results
obtained from previous local DFTþ DMFT calculations
[15,25] pointing to an important relation between both
approaches in this region of interactions.
Models and methods.—Starting from a DFT calculation

of LiFeAs in the tetragonal crystal structure [41] within the
generalized gradient approximation (GGA) [42] using the
full-potential linear augmented plane-wave basis from
WIEN2k [43], we derive an effective low-energy model
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comprising the Fe 3d orbitals using maximally localized
Wannier functions as implemented in Wannier90 [44] (see
Supplemental Material [45]). We effectively then solve a
two-dimensional system by restricting our calculation to
the kz ¼ 0 plane, since the low-energy electronic structure
shows only weak dispersion along kz. In this Wannier-
projected 2D model we have an electron occupation of 6.
Interaction parameters for the lattice Hubbard model were
obtained within the constrained random-phase approxima-
tion [49] on the DFT band structure (see Supplemental
Material [45]).
The TPSC method considers the Luttinger-Ward func-

tional Φ½G� [50,51], which is a functional of the interacting
Green’s function G and yields the self-energy Σ and
two-particle irreducible four-point vertex Γ as functional
derivatives:

Σ ¼ δΦ
δG

; Γ ¼ δ2Φ
δG2

: ð1Þ

Within the TPSC approach one approximates the vertex Γ
to be static and momentum independent [39] (but fully
orbital dependent). One obtains a set of self-consistent and
conserving equations that satisfy the Pauli principle and
Mermin-Wagner theorem. The range of validity of TPSC is
the regime of weak to intermediate couplings where the
local and static approximation of the vertex is valid, i.e.,
away from any phase transition. This method has been
extended to multisite [52–57], nearest-neighbor interaction
[58], and multiorbital [59] generalizations of the Hubbard
model and has provided valuable insight on the pseudogap
physics in the cuprates [60] and unconventional super-
conductivity [54,61,62].
In the multiorbital generalization of the TPSC method,

similar to the original formulation [59], we first introduce
the noninteracting susceptibility χ0 given by

χ0λμνξðq⃗; iqmÞ ¼ ½G0
νλ⋆G0

μξ�ðq⃗; iqmÞ; ð2Þ

where G0 denotes the noninteracting Green’s function in
orbital space, ⋆ denotes a convolution over frequency and
momentum, and qm ¼ 2mπT is themth bosonic Matsubara
frequency. The interacting susceptibility χ is decomposed
into the spin and charge channel (χsp and χch, respectively)
and reads

χspðq⃗; iqmÞ ¼ ½I − χ0ðq⃗; iqmÞUsp�−12χ0ðq⃗; iqmÞ;
χchðq⃗; iqmÞ ¼ ½I þ χ0ðq⃗; iqmÞUch�−12χ0ðq⃗; iqmÞ; ð3Þ

where the inversion of a four-index tensor is given as the
matrix inverse after combining the first and last two indices
of λμνξ into a superindex ðλμÞðνξÞ.
We only consider the Uch=sp

ααββ and Uch=sp
αβαβ ¼ Uch=sp

αββα matrix
elements of the renormalized irreducible vertices in the spin

Usp and the charge channel Uch to be nonzero, correspond-
ing to the atomic symmetry of 3d orbitals. Those elements
are determined by enforcing the following local spin and
charge sum rules:

T
Nq⃗

X

q⃗;m

χspμνμνðq⃗;iqmÞ¼hnμ↑iþhnν↑i−2hnμ↑nν↓i;

T
Nq⃗

X

q⃗;m

χspμμννðq⃗;iqmÞ ¼μ≠ν2hnμ↑nν↑i−2hnμ↑nν↓i;

T
Nq⃗

X

q⃗;m

χchμμννðq⃗;iqmÞ¼2hðnμ↑þnμ↓Þnν↑i−nμnν;

T
Nq⃗

X

q⃗;m

χchμνμνðq⃗;iqmÞ ¼μ≠ν
nμþnν

2
−hð4nμ↑−2nμ↓Þnν↑i: ð4Þ

In order to solve this underdetermined set of equations, we
employ an ansatz for the spin vertex Usp that is motivated
by the Kanamori-Brueckner screening [39,59] and intro-
duce an additional particle-hole symmetrization to keep all
equations within TPSC particle-hole symmetric:

Usp
μμμμ ¼ 1

2

� hnμ↑nμ↓i
hnμ↑ihnμ↓i

þ particle ↔ hole

�
Uμμ;

Usp
μνμν ¼ 1

2

� hnμ↑nν↓i
hnμ↑ihnν↓i

Uμν þ
hnμ↑nν↑i
hnμ↑ihnν↑i

ðUμν − JμνÞ

þ particle ↔ hole

�
¼ Usp

μμνν ¼ Usp
μννμ: ð5Þ

The local spin vertex Usp can be obtained by iterating the
equations above. For the charge channel we optimizeUch in
order to fulfill the corresponding charge sum rules, restrict-
ing to positive values of Uch because in certain cases
negative values can lead to noncausal self-energies.
Because of the constraint we search for values of Uch that
minimize (see Supplemental Material [45]) the difference
between the left-hand side and right-hand side of the charge
sum rules [Eq. (4)].
After the determination of the spin and charge vertices,

the self-energy Σ and interacting Green’s function G are
then given as

Σμν ¼
1

4

X

α;β

½UspχspUsp;0 þ UchχchUch;0�ναμβ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔Vναμβ

⋆G0
βα;

Gðk⃗; iωnÞ ¼ ½ðiωn þ μÞI −H0ðk⃗Þ − Σðk⃗; iωnÞ�−1; ð6Þ

where the noninteracting vertices are zero except for the
matrix elements: Usp=ch;0

μμμμ ¼ Uμμ, U
ch;0
μμνν ¼ 2Uμν − Jμν, and

Usp=ch;0
μνμν ¼ Usp=ch;0

μννμ ¼ Usp;0
μμνν ¼ Jμν, with μ ≠ ν. No Hartree

term is included in Σ since it is already contained in the
DFT-derived Hamiltonian H0.
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Our multiorbital extension of TPSC differs from pre-
vious formulations [59] on the following aspects. It restricts
the self-consistent equations in the charge channel in
Eq. (3) to ensure positivity of the spectral weight and
chooses a symmetrized ansatz for Usp [Eq. (5)].
Furthermore, the set of local spin and charge sum rules
[Eq. (4)] and bare vertex tensors Uch;0, Usp;0 [Eq. (6)] and
their dependence on U, J are derived from the Bethe-
Salpeter equation for the self-energy Σ within TPSC [39],
which is different from the random-phase approximation
derived expression of Uch;0, Usp;0 only in the ijij element,
i ≠ j [59].
Our calculations were performed at T ¼ 0.015 eV ≈

174 K since this is the lowest accessible temperature before
spin fluctuations get too strong and the TPSC approxima-
tion is not justified anymore. Nevertheless, we checked that
the results presented below do not change in their trends up
to room temperature (see Supplemental Material [45]).
Results and discussion.—In Fig. 1 we show the TPSC

spectral function Aðk⃗;ωÞ for LiFeAs along Γ-X-M-Γ in the
two-iron Brillouin zone. To emphasize the changes in the
electronic structure beyond an overall bandwidth renorm-
alization of about a factor of 2, we also plot the renormal-
ized DFT band structure on top. We observe that the
electronic correlations introduce a down-shift of the hole
states around the Fermi level at the Γ point, while the
electron states at M are slightly shifted up in energy, the
inner electron pocket being shifted by −0.1 eV on average
while the outer electron pocket is shifted by only −0.01 eV.
This leads to an overall shrinking of hole and electron
pockets, corresponding to the blueshift-redshift seen in
ARPES measurements [24,26] compared to the DFT band
structure. Apart from orbital dependence, the shrinkings are

momentum dependent. For example, along Γ-X the middle
hole pocket shrinks to approximately 20% of its size
compared to the renormalized DFT band structure while
all other parts of the Fermi surface shrink to 80%–90% of
their original size. The inner hole pocket at Γ, composed of
Fe 3dxz=3dyz orbital character [see Fig. 2(a)], becomes very
diffuse at the Fermi level due to incoherent scattering
processes, leading to a significant reduction of the lifetime
of quasiparticle excitations. This manifests in a broad Fermi
surface feature very similar to the one observed in ARPES
[24–26,28,30]. The maximum of the spectral function of
the two inner hole pockets at Γ is shifted basically on top of
the Fermi level but retains significant spectral weight at
higher and lower binding energies—the shift being on
average 0.18 eV for both while for the outer hole pocket it
is 0.1 eV. We expect that the inclusion of spin-orbit
coupling, which is beyond our current approach, will split
this feature, effectively pushing one hole band below and
the other above the Fermi level, giving rise to only one
central hole Fermi surface pocket, which would be in very
good agreement with previous ARPES data [26,63] as well
as dHvA experiments [40].
We can trace back these Fermi surface modifications to

the value of the self-energy at the specific k⃗ points in the
Brillouin zone: The largest contribution to the diagonal
elements of the self-energy in Eq. (6) stems from Vabab,
which is peaked at k⃗ ¼ fð�π; 0Þ; ð0;�πÞg. Following the
argumentation of Ref. [23], this leads to a negative
(positive) real part of the self-energy in the vicinity of
the hole (electron) pockets and thus to the observed
blueshift-redshift, and therefore it is a consequence of
nonlocal spin fluctuations.
In Fig. 2 we show the orbitally resolved Fermi surface

obtained from DFT (within GGA) [Fig. 2(a)], DFTþ
TPSC [Fig. 2(b)], and DFT+“local TPSC,” where the
momentum-dependent TPSC self-energy Σðk⃗;ωÞ has been
approximated by its local component ð1=Nk⃗Þ

P
k⃗ Σðk⃗;ωÞ

[Fig. 2(c)]. The DFT Fermi surface reveals three well-
defined distinct hole pockets centered at Γ with circular to
square shape and two electron pockets centered at M. As
can already be deduced from the spectral function Aðk⃗;ωÞ
in Fig. 1, the Fermi surface experiences appreciable
changes due to the TPSC self-energy contributions. All
pockets are reduced in size, with the remaining spectral
weight of the two center hole pockets of Fe 3dxz=3dyz
character at Γ becoming incoherent and forming a flower-
like shape, while the outer hole pocket of 3dxy character
stays coherent, as confirmed in ARPES measurements
[24,26]. The electron pockets at M shrink slightly and
broaden, since they are mostly composed of the most
incoherent 3dxz=3dyz as well.
The observed shrinking of the hole and electron pockets

deviates significantly from published DFTþ DMFT
results, most likely due to the inclusion of nonlocal

FIG. 1. Interacting spectral function Aðk⃗;ωÞ within the TPSC
approach for LiFeAs in the two-iron Brillouin zone. For com-
parison, we show the DFT (GGA) band structure renormalized by
the average mass enhancement ≈2 (dotted lines). We observe an
overall shrinking of the electron and hole pockets at Γ and M
originating from the nonlocal components of the self-energy. The
center hole pockets at Γ become incoherent and diffuse due to
finite lifetime effects in the Fe 3dxz=3dyz orbitals.
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correlations in the TPSC approach which go beyond the
DMFTapproximation where the self-energy is purely local.
In order to confirm this assumption, we separate the local
from the nonlocal correlation effects by employing a
DMFT-like approximation on the TPSC self-energy. We
approximate the full momentum-dependent TPSC self-
energy Σðk⃗;ωÞ by its local component and compare the
resulting Fermi surface to the full result in Fig. 2(c). The so-
obtained Fermi surface indeed recovers the result obtained
within published DFTþ DMFT [15,25], and, when con-
sidering the DFTþ DMFT results for the same model as
used in this work (see Supplemental Material [45]), the
agreement is almost perfect [compare Figs. 2(c) and 2(d)].
DFTþDMFT calculations with a different double counting
scheme [22] see a more pronounced—although coherent—
flowerlike shape of spectral weight around Γ but do not
account for the blueshift-redshift. This shows that when
taking into account nonlocal fluctuations, the local
Coulomb interaction gives rise to a significant momen-
tum-dependent self-energy and can account for the exper-
imentally observed blueshift-redshift. Interestingly, within
the local approximation (local TPSC) the center hole
pockets at Γ become again coherent, which is also in
correspondence with the DMFT result. This shows that the
quasiparticle scattering rate itself is strongly momentum
and orbital dependent, which has in fact been observed in
recent ARPES experiments [26,28], where the inner
3dxz=3dyz derived hole Fermi surfaces have been found
to be incoherent while the outer 3dxy hole pocket shows
Fermi-liquid behavior.
Since Fermi-liquid theory predicts a quadratic energy

dependence of quasiparticles’ lifetimes near the Fermi
energy, deviations from this energy dependence are also
a signature for non-Fermi-liquid behavior. It is therefore
compelling to analyze the energy dependencies of the
scattering rate within the TPSC approach. For this, we
present the quasiparticle lifetime −Zk⃗Σ

00ðk⃗; wÞ with

Zk⃗ ¼
1

1 − ∂Σ00ðk⃗;iωnÞ∂wn
jiωn→0þ

ð7Þ

in Fig. 3 at four different k⃗ points in momentum space
following the Γ-M path. Along this path the dominating
contributions are (1) dyz hole pocket, (2) dxy hole pocket,
(3) dxy electron pocket, and (4) dxz electron pocket [see
Figs. 2(a) and 2(b)]. The energy dependence of the
quasiparticle lifetimes for the dxz=yz electron and hole
pockets (red symbols in Fig. 3) are in good agreement
with the results of Ref. [26] with values between 0.025 and
0.035 eV. The energy dependence shows a very shallow
linear behavior (fitted slopes are of the order of 10−3, see
Supplemental Material [45]) similar to the measurements

FIG. 2. (a) Orbital-resolved Fermi surface obtained from DFT (GGA) where the dominant orbital characters are dxy (red), dyz (blue),
and dxz (green). Three hole pockets are centered around Γ and two electron pockets around the M point. (b) Fermi surface from
DFTþ TPSC. We observe strong incoherence effects on the inner hole and electron pockets. The two inner hole pockets become very
incoherent and form a flowerlike shaped region of spectral weight. (c) Fermi surface from DFT+“local TPSC,” where the momentum-

dependent TPSC self-energy Σðk⃗;ωÞ has been approximated by its local component ð1=Nk⃗Þ
P

k⃗ Σðk⃗;ωÞ. In this approximation the
Fermi surface recovers published DFTþ DMFT results well [15,25]. (d) DFTþ DMFT Fermi surface for the same model (see
Supplemental Material [45]) as used in this work. We see a strong similarity to the DFTþ local TPSC result in (c).

FIG. 3. Quasiparticle lifetimes −Zk⃗Σ
00ðk⃗;ωÞ along Γ-M as a

function of the binding energy ω [numbers on the right corre-
spond to positions in Fig. 2(c)]. We find that the quasiparticles
with dxz=yz character display a linear dependence in ω while the
electron pockets have a quadratic increase with energy (see
Supplemental Material [45]).
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from Ref. [26]. The quasiparticle lifetimes of the dxy hole
and electron pockets (blue symbols in Fig. 3), in contrast,
show at the considered k points a quadratic increase in
energy as in the ARPES measurements of Ref. [26],
suggesting a Fermi-liquid-like behavior. Although our data
were obtained at T ≈ 174 K in contrast to the T ¼ 25 K in
Ref. [26], we are confident that our results are still
valid at low temperatures, since, for example, in
BaðFe0.92Co0.08Þ2As2 it has been found that the quasipar-
ticle lifetimes for the hole dxz=yz orbitals showed weak
temperature dependence. We also checked how these
results depend on the k⃗ path and found that small trans-
lations along the tip of electron pocket (3) reveal a linear
dependence of the quasiparticle lifetime, as can already be
expected since the quasiparticle weight gets incoherent
away from the point (3) [see Fig. 2(b)].
Summary.—In conclusion, we presented a multiorbital

TPSC scheme that respects local spin and charge sum rules.
This method includes effects of local and nonlocal corre-
lations on an equal footing within the validity of the local
approximation of the irreducible four-point vertex and thus
yields momentum- and frequency-dependent self-energies.
We applied this method to the multiorbital iron-based
superconductor LiFeAs and found that the nonlocal com-
ponents of the self-energy are decisive to explain its
experimentally observed spectral function Aðk;ωÞ and
Fermi surface. Taking into account nonlocal correlations,
we observe a blueshift-redshift of the electronic structure,
where the hole bands at the Brillouin zone center are
lowered in energy, while the electron bands in the corner of
the Brillouin zone are slightly shifted upwards, resulting in
an overall reduction of the size of the Fermi surface
pockets. Overall, we find very good agreement with
ARPES and dHvA experiments, where the blueshift-red-
shift was first observed. We could show that our TPSC
approach within a local approximation to the self-energy
recovers the DFTþ DMFT result which does not exhibit
the blueshift-redshift, both benchmarking the TPSC result
and showing the importance of going beyond the local
picture of DMFT in order to understand the electronic
structure of iron-based superconductors. Furthermore, we
also found a strong momentum and nonquadratic energy
dependence of the electronic scattering rate, in good
agreement with recent ARPES measurements.
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