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Amechanism for the phononHall effect (PHE) in nonmagnetic insulators under an externalmagnetic field
is theoretically studied. PHE is known in (para)magnetic compounds, where themagneticmoments and spin-
orbit interaction play an essential role. In sharp contrast, we here discuss that the PHE also occurs in
nonmagnetic band insulators subject to themagnetic field.We find that a correction to theBorn-Oppenheimer
approximation gives rise to a Raman-type interaction between the magnetic field and the phonons; this
interaction gives rise to theBerry curvature of a phononband. ThisBerry curvature results in the finite thermal
Hall conductivity κH in nonmagnetic band insulators. Thevalue of κH is calculated for square and honeycomb
lattices. The order of the magnitude estimation for κH is given for Si at room temperature.
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Introduction.—Hall effects are one of the most important
subjects in condensed matter physics. They provide the
information on the sign and density of the carriers in
semiconductors, and the shape of the Fermi surface in
metals. Since the discovery of the quantum Hall effect [1],
the close connection of Hall effects to the topological
nature of electronic states in solids has become a keen
issue. In addition to the quantum Hall effect, the anomalous
Hall effect in metallic magnets [2], and spin Hall effect in
semiconductors [3] are interpreted as the consequence of
the geometric phase of Bloch wave functions, i.e., the Berry
phase in solids [4]. The Berry phase can be nonzero even
for neutral particles such as photons [5] and magnons
[6–9], and the Hall effects of these particles are observed
experimentally in Refs. [10,11], respectively.
Phonon is another neutral particle in solids, and the

thermal Hall effect of phonons, phonon Hall effect, has
been studied experimentally [12,13] and theoretically
[14–22]. In most of the theoretical works the intrinsic
Hall effect is studied. Particularly, the Raman-type inter-
action is often assumed whose Hamiltonian reads

HRaman ¼ λM · ðu × PÞ; ð1Þ

where M is the electronic magnetization, u the displace-
ment of the nucleus, and P the momentum of the nucleus.
This coupling λ is supposed to originate from the spin-
lattice interaction, but the microscopic theory for λ is
missing in most of the cases.
The charge of the phonon, however, is a subtle issue

because the atomic nuclei are positively charged, which is
compensated by the electrons. Then the screening effect of
electrons should be treated properly to ensure the neutral
nature of phonons. The conventional formalism to study the
electron-phonon coupled system is the Born-Oppenheimer
(BO) approximation [23], which uses the fact that the

electron mass m is much lighter than that of atoms M.
Writing the wave function as the product of the electronic
and nuclear part, i.e., Ψðr; RÞ ¼ ψ elðr; RÞϕnuclðRÞ with r
and R being the position of electrons and nuclei, respec-
tively, the ratio of the length scales lel and lnucl for
ψ elðr; RÞ and ϕnuclðRÞ is estimated as

lel=lnucl ∼ ðmnucl=melÞ1=4: ð2Þ

Therefore, the derivative ∇R on ψ elðr; RÞ can seemingly be
neglected and the Schrödinger equation for ϕnuclðRÞ con-
tains the information of electrons only through the ground
state energy EðRÞ of electrons which depends on the
nuclear position R regarded as the static parameter. In this
approximation, however, the nucleus feels the external
electromagnetic field as the particle with positive charge
Ze. This drawback can be remedied by introducing the
Berry phase into the Hamiltonian of the nucleus [23].

Hnucl ¼
X
n

½Pn − ZeAn − anðRÞ�2
2mnucl

þ UðRÞ; ð3Þ

where n specifies the atom and R ¼ ðR1;…;RNÞ represents
the coordinates of all the N atoms. Here, anðRÞ is the Berry
connection given by

aαnðRÞ ¼ iℏ

�
ψ elðr; RÞ

���� ∂
∂Rα

n
ψ elðr; RÞ

�
; ð4Þ

where jψ elðRÞi is the state of electrons with a dependence
on nuclear coordinates. UðRÞ is the sum of the electronic
ground state energy and the interaction between nuclei.
This anðRÞ cancels the vector potential An for the

external electromagnetic field in the case of a single atom;
i.e., the screening of the positive charge of the nucleus by
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electrons is recovered [23]. For the hydrogen molecule, it
has been discussed that this screening is perfect for the
center-of-mass motion while the magnetic field effect
survives for the relative motion of the two atoms [24].
Therefore, the effect of the magnetic field on the phonons in
crystal remains an important issue to be studied.
In the present Letter, we study theoretically the Berry

phase appearing in the phonon Hamiltonian and the
consequent thermal Hall effect in a trivial band insulator.
Our model is the spinless fermion model with an s orbital at
each site, and there are no magnetic moments or spin-orbit
interactions. Therefore, the effect of the magnetic field is
only through the orbital motion of electrons and nuclei. As
for the electrons, the Lorentz force is acting to produce the
weak orbital diamagnetism but there is no thermal Hall
effect because of the energy gap in the low temperature
limit. As for the phonons, on the other hand, the acoustic
phonons have gapless dispersions, and hence can be excited
thermally even at a low temperature.
Berry curvature and screening.—From the Berry con-

nection given in Eq. (4), we obtain the Berry curvature Fμν as

Fμν ¼ ∂μaν − ∂νaμ

¼ −2ℏImh∂μψ elðr; RÞj∂νψ elðr; RÞi: ð5Þ

Here, we introduced the symbol μ ¼ ðn; αÞ for the α
component of the nth nucleus. Therefore, Fμν is the tensor

with 3N × 3N components.We also denote it byFαβ
nm in order

to emphasize the nuclear and spacial indices. We note that, as
mentioned by Resta [25], Fμν is antisymmetric for the
exchange of μ and ν, but not for α and β, i.e., the condition

Fαβ
nm ¼ −Fβα

nm ¼ Fαβ
mn ð6Þ

is not always true.
From Eq. (3), we obtain the equation of motion of nuclei:

MR̈α
n ¼ −∂nαU þ ϵαβγVβ

nZeBγ −
X
m

Vβ
mF

αβ
nm;

where Vn indicates the velocity of nuclei n. When
Eq. (6) holds, one can define a vector bαnm ≔ 1

2
ϵαβγFβγ

nm ¼
1
2
ϵαβγFβγ

mn, by which the last term turns into
P

m ϵαβγVβ
mb

γ
nm.

This means that bnm works as an effective magnetic field in
the system and induces effective Lorentz force.
In a hydrogenlike atom under a magnetic field, the

Berry curvature contribution cancels the external magnetic
field [23]. The key point is the Uð1Þ phase attached to
the wave function due to the magnetic field. The atomic
orbital φðr − RÞ acquires an extra phase under the magnetic
field:

φðr − RÞ → φ0ðr;RÞ ¼ φðr − RÞeðie=ℏÞAðRÞ·r: ð7Þ

Here, we have fixed the gauge and used the symmetric
gauge. Although the manner of attaching the phase is a
subtle problem, it is known that, as for the symmetric
gauge, Eq. (7) yields physically correct results up to the
B-linear order. In calculating the curvature, the derivative
with respect to the nuclear coordinates is modified by
this additional phase, which extracts the effect from the
magnetic field.
On the other hand, the situation is quite different if the

system contains two or more nuclei. In the hydrogen
molecule, for instance, cancellation of the external mag-
netic field and the Berry curvature is perfect for the
translational motion, but not for the relative motion of
the two nuclei [24]. In general cases, the screening of the
magnetic field is guaranteed only for the translational
motion, described byX

nm

Fαβ
nm ¼ −NϵαβγZeBγ: ð8Þ

Estimation of the Berry curvature.—As a simple esti-
mation of the Berry curvature Fμν, we here study the Berry
curvature of phonons in a two-dimensional square and
honeycomb lattice with N nuclei and the same number of
spinless electrons. (The discussion below can be similarly
applied to other lattice structures.) Each electron is tightly
bound to each atom, and then the wave function for the
noninteracting electrons is given by the Slater determinant
of the wave functions of all the N atoms. We denote the
single-particle state of the ith electron at the nth nucleus by
ϕin ¼ φ0ðri; RnÞ, given in Eq. (7). The many-body wave
function is proportional to the determinant of Φðr; RÞ, an
N × N matrix whose (i, n) component is given by ϕin.
Although this model is very simple, the microscopic
mechanism discussed here is ubiquitous and applicable
to any materials.
The key factor which characterizes the Berry curvature

of electron-phonon coupled systems is the overlap integral
between the orbitals of the nth and mth atoms, which we
denote by Snm. The overlap integral is affected by the
additional phase factor of the atomic orbital under the
magnetic field. The modified overlap integral S0nm ≔R
d3riϕ�

inϕim is given by Snm0 ¼ Snmeiθnm þOðB2Þ, where
θnm ≔ ðe=ℏÞAðRnÞ · Rm. For brevity, we here define two
matrices, S and S0, whose (n, m) components are Snm and
S0nm, respectively.
The normalized wave function of this system is given

by ψ elðr; RÞ ¼ ðN! det S0Þ−1=2 detΦðr; RÞ. The general for-
mula of Fμν of lattice systems is obtained by substituting
ψ elðr; RÞ into Eq. (5), which is reduced to simpler formulas
in concrete models, the details of which are given in the
Supplemental Material [26]. Here, we assume that the
overlap integral between the nearest-neighbor nuclei is
dominant. Furthermore, we consider s orbitals, which are
isotropic and real valued. Under this assumption, Fμν for
the square lattice is obtained up to the linear order in B [26]:

PHYSICAL REVIEW LETTERS 123, 255901 (2019)

255901-2



aαn ¼ −e
�
Aα
nðS−1Þnn þ

X
l≠n

Aα
l ðS−1ÞnlSnl

�
; ð9aÞ

Fαβ
nn¼−ðS−1ÞnnϵαβγeBγ

−
X
l

ðS−1Þnl½−eðAβ
n−Aβ

l Þ∂nαSnlþeðAα
n−Aα

l Þ∂nβSnl�;

ð9bÞ

Fαβ
nm ¼ −ðS−1Þnm½ϵαβγeBγSnm þ eðAβ

n − Aβ
mÞ∂nαSnm

− eðAα
n − Aα

mÞ∂mβSnm�: ð9cÞ

Here, we abbreviated AαðRnÞ to Aα
n. Equations (9b) and

(9c) imply that the curvature is mainly dependent on the
overlap integral and its derivative. The obtained expression
of Fαβ

nm is antisymmetric for the exchange of α and β, and
hence we can define a vector bαnm ≔ 1

2
ϵαβγFβγ

nm, the curva-
ture felt by nucleus n and caused by nucleus m. bnm is
parallel to B, and the magnetic screening effect,

X
m

bnm ¼ −eB; ð10Þ

is guaranteed, as in Eq. (8) (Z ¼ 1 in this model).

EffectiveHamiltonian for the band insulator.—The effec-
tive Hamiltonian for the phonons is obtained by consid-
ering a small deviation un of the nuclei from its ground state
position R0

n; Rn ¼ un þ R0
n. As for the interaction among

nuclei, only quadratic terms of uαn’s are taken into account.
The Berry curvature at the equilibrium atomic positions,

i.e., Fαβ
nmjR¼R0 , is included in the Hamiltonian by the

minimal coupling, as in Eq. (3). Hereafter, we omit
“R ¼ R0” and always take this substitution without notice.
Figure 1 shows the numerical evaluation of Fxy

nm for the
nearest-neighbor pair (n, m). The Berry connection can be
expressed by using bnm up to the linear order of uαn:

an ¼
X
m

1

2
bnm × Rm ¼

X
m

1

2
bnm × um þ ðconstÞ; ð11Þ

where the constant term can be removed by gauge trans-
formation. Combining the contributions from the external
magnetic field and the Berry curvature, the effective vector
potential becomes

a0n ≔ eAðRnÞ þ an ¼
1

2

X
m

bnm × ðum − unÞ: ð12Þ

In the second line, we used the identity equation (10).
The Hamiltonian of the lattice vibration is modified in

the existence of a0n: the resultant Hamiltonian for our model
is given by

Hnucl ¼
X
n

�ðPn − a0nÞ2
2mnucl

þ 1

2

X
m

uTnDnmum

�
ð13aÞ

¼
X
k

�
1

2mnucl
Πα†

k Πα
k þ

1

2
Dαβ

k uα†k uβk

�
; ð13bÞ

where Πk ≔ Pk − a0k is the momentum under a magnetic
field. It is noted that the commutation relationship of uk and
Πk is different from that of usual canonical operators:
½uαk; uβq� ¼ 0, ½uαk;Πβ

q� ¼ iℏ, and ½Πα
k;Π

β
q� ¼ iℏGαβ

k , where

Gαβ
k ≔ ∂kαa0

β
k − ∂kβa0αk. We can see that the effective vector

potential plays a role of the Raman interaction. Compared
with the original Raman interaction, a0n does not include k-
independent constant terms but a second-order derivative,
so that it vanishes in the k → 0 limit. This is consistent with
Eq. (45) of Ref. [20].
Thermal Hall effect.—The effective vector potential a0n

induces the thermal Hall effect of phonons. In this section,
we derive the analytic expression for the thermal Hall
conductance κH and numerically estimate it.
The definition of energy current in lattice systems, which

we denote JE, was given by Hardy [31] as an operator
satisfying the local energy conservation law. In addition to
the usual Kubo formula, we have to take into account the
contribution from the energy magnetizationME, defined by
JE ¼ ∇ ×ME [32]. The complete formula for the thermal
Hall conductance is given by

κtrH ¼ κKuboH þ 2Mz
E
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FIG. 1. The Berry curvature of the nearest-neighboring 1s
orbitals, Fxy

nm (or, equivalently, bznm), is plotted with respect to the
lattice constant. The blue line corresponds to the square lattice,
and the orange one to the honeycomb lattice, where there is little
difference. The unit of the vertical axis is eB=ℏ. For the horizontal
axis, the lower and upper axes show the lattice constants and the
corresponding values of the overlap integral.
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The detailed calculation was given by Qin et al. [20]. The
general formula for the thermal Hall conductance of
bosonic particles is

κtrH ¼ −
ðπkBÞ2T

3ℏ
Zph −

1

T

Z
∞

0

dϵϵ2σxyðϵÞ
dnBðϵÞ
dϵ

; ð14Þ

whereZph ≔
P

i∈particle bandsð1=VÞ
P

k∈BZ Ω
z
ki and σxyðϵÞ ≔

ð−1=VℏÞPℏωki≤ϵ Ω
z
ki. Here, ωki is the frequency of the

phonon of the ith mode and nBðϵÞ ¼ 1=ðeβϵ − 1Þ is the Bose
distribution. The Berry curvature of phonons is defined as

follows [17,20]: we define twomatricesAk andBk byAk ¼
iℏ½O−I2

I2
Gk
� andBk ¼ ½Dk

O
O

m−1
nuclI2

�, where I2 is the 2 × 2 identity

matrix. From the equation of motion, the eigenenergy is
obtained by diagonalizing H̃k ≔ AkBk. We denote the
eigenvectors of H̃k by jvii. Then the Berry connection
and curvature are defined by

aαki ≔ −ImhvijBk∂kαjvii; ð15aÞ

Ωz
k;i ≔ ∂kxa

y
ki − ∂kyaxki: ð15bÞ

The first term in Eq. (14) consists of a summation of
Berry curvature over the Brillouin zone and over all the
particle bands, Zph. In the previous study, Zph is supposed
to vanish in most cases [20]. For the case of magnonic
systems, the summation of the Chern number over particle
bands is exactly zero [33]. This can be explained by the fact
that the Bogoliubov–de Gennes Hamiltonian of the system
is adiabatically connected to a trivial matrix, whose Berry
curvature is zero. A parallel discussion leads to the
conclusion that Zph ¼ 0 holds exactly in our model [26],
if we perturb the system to introduce the gap at k ¼ 0 so
that the Chern number is well defined.
We here apply the continuum approximation in order to

see the behavior of κH at low temperature and identify on
which factors κH is dependent. The dynamical matrix and
the vector potential of the general Hamiltonian of phonons
with Raman-type interaction are given byDαβ

k ¼ μ1k2δαβ þ
μ2kαkβ and a0αk ¼ γ1∂α∂βϵ

βρσMρuσ þ γ2∇2ϵαβγMβuγ in
Eq. (13b), where γ1 and γ2 are coupling constants [20].
The corresponding geometric curvature is Gαβ

k ¼
ð1=mnuclÞϵαβγ½−γ1kγk ·M þ ðγ1 þ 2γ2Þk2Mγ�. The con-
tinuum approximation is valid when the temperature is
sufficiently low, i.e., ΘD ≫ T (ΘD ≔ ℏcTπ=akB is the
Debye temperature, where cT is the sound velocity of
the transverse acoustic mode). Under these conditions, the
thermal Hall conductance in two dimensions reads

κ2DH ¼ π2kB
mnuclΘ2

D
Γ2DT2

Z
∞

0

dx
x3ex

ðex − 1Þ2 : ð16Þ

Γ2D is a constant dependent on the ratio of sound speed of
the longitudinal and transverse modes, δ ≔ cL=cT , which is
given by

Γ2D ¼ 2πð2γ2 − γ1ÞMz ðδ − 1Þ2
δðδþ 1Þ : ð17Þ

Now, we apply the discussion above to our model.
In nonmagnetic insulators, the geometric curvature bnm
plays the role of the magnetization M, and it takes
finite value only for the nearest-neighbor nuclei. We here
denote bnm of the nearest-neighbor nuclei by b. The sum
over m in Eq. (12) is reduced to the sum over the nearest-
neighbor nuclei; i.e., m is an integer which satisfies R0

m ¼
R0
n � ex;R0

n � ey where ex (ey) is the lattice vector for
the x (y) direction. Assuming un is a slowly varying
parameter of Rn, we expand it by the gradient as
uαn�xðyÞ ≃ uαn � a∂xðyÞuαn þ ða2=2Þ∂2

xðyÞu
α
n. Then the vector

potential (12) becomes

a0ðRÞ ¼ a2b ×∇2uðRÞ: ð18Þ
Therefore, the coupling constants are replaced as γ1 → 0

and γ2Mz → a2bz (in the honeycomb lattice, a prefactor
2=3 is attached to γ2). Equation (16) implies that the factors
which dominate the value of κH are (i) the sound velocity of
phonons and the ratio of that of longitudinal and transverse
modes, (ii) the mass of nuclei, and (iii) the screening of the
magnetic field, which is determined by the overlap integral
of atomic orbitals between neighboring sites.
Figure 2 shows our calculation of the thermal Hall

conductivity in the lattice models. Here, the thermal Hall
conductance in two dimensions κ2DH is translated into the
thermal Hall conductivity in three dimensions κH by
assuming that the thickness of the layer is almost the same
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FIG. 2. The thermal Hall conductance of the lattice models
under B ¼ 10 ðTÞ is plotted with respect to temperature. The blue
and orange lines correspond to square and honeycomb lattices,
respectively. The inset shows the plot of κH=T with respect to
dimensionless temperature T=ΘD. It can be seen to what temper-
ature the T2 law κH ∝ T2, i.e., the continuum approximation
equation (16) holds. With our choice of the parameters [see the
main text], ΘD ¼ 216 K.
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as the lattice constant, i.e., κH ≔ κ2DH =a. One can see
different behaviors of κH in the square and honeycomb
lattices. This is due to the two kinds of the divergence in
Ωz

k;i: one comes from the Γ point, which exists in any lattice
structure, while the other comes from the anticrossing point
of two bands along the high symmetry line [26]. The Berry
curvature of the optical bands is much larger than that of the
acoustic bands, which is similar to the angular momentum
of the phonon [34]. Thus, the contribution from the
anticrossing point becomes dominant at higher temper-
atures. Moreover, it has a negative sign, as can be seen in
the magnon Hall effect in a Kagome magnet [35].
Let us explain how we determine the parameters used to

obtain the results in Fig. 2. Materials well described by our
model are monatomic, nonmagnetic band insulators, and
one candidate material is Si crystal: although the lattice
structure is different from square or honeycomb lattices, we
believe the order of the magnitude estimation of κH is
approximately estimated by our model. Thus, the para-
meters used in the calculation are a ¼ 2.31 Å, mnucl equals
28 times proton mass, and the spring constants between
nearest neighbor and next-nearest neighbor are chosen so
that the sound velocities satisfy cT ∼ 5 × 103 m=s and
cL ∼ 9 × 103 m=s. The outermost electrons in Si crystal
form the hybridization of 3s and 3p orbitals, i.e., so-called
sp3 orbitals. For simplicity, we here estimate the overlap
using the 3s orbital with an effective charge Z ¼ 4.15,
which results from the Slater rule, and obtain S ¼ 0.35.
Using this, the Berry curvature is estimated to be
bz ∼ 0.3eB=ℏ. The resultant thermal Hall conductance is
κH ∼ 10−6 W=Km at T ¼ 300 K. This can be distinguished
from the contribution from thermally excited electrons and
holes κel;hH , which is estimated to be much smaller. In Si,
for example, the intrinsic carrier concentration is ni ¼
1010 cm−3 at T ¼ 300 K [36], and κel;hH ∼ 10−9 W=Km at
B ¼ 10 T [26]. Thus, we believe the phonon Hall effect is
detectable at higher temperatures and with a larger temper-
ature gradient.
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