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Two bodies resting at a fluid interface may interact laterally due to the surface deformations they induce.
Here we use an applied magnetic force to perform direct measurements of the capillary attraction force
between centimetric disks floating at an air-water interface. We compare our measurements to numerical
simulations that take into account the disk’s vertical displacement and spontaneous tilt, showing that both
effects are necessary to describe the attraction force for short distances. We characterize the dependence of
the attraction force on the disk mass, diameter, and relative spacing, and develop a scaling law that captures
the observed dependence of the capillary force on the experimental parameters.
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Capillary attraction between floating bodies has been a
subject of curiosity and scientific interest for over 70 years
within physics and engineering, although qualitative
descriptions of the phenomenon extend even further back
in the history of science. One of the first mathematical
explorations of capillary attraction was by Nicolson, who
demonstrated that the attraction between bubbles at a free
surface was due to the presence of buoyancy-induced
interfacial deformation [1]. This early modeling work
was inspired by the experimental observations of Bragg,
who used self-assembled aggregates of monodisperse
bubbles as an analog system for atomic crystal physics
[2,3]. Since that time, it is now well understood that
two bodies resting at a fluid interface may attract through
their mutual surface deformation in order to minimize
the gravitational and surface energy of the system [4].
Furthermore, interesting analogies have also recently been
established between capillary attraction and electrostatic
repulsion due to the similarity of the governing equations in
certain regimes [5–8]. Capillary interactions have been a
topic of focus in several review articles [8–11]. Recently,
this effect has been popularized and called the “Cheerios
effect” [12], after the casual observation that the famous
breakfast cereal tends to cluster on milk rather than
remaining dispersed at the interface.
This aggregation mechanism has seen a resurgence of

interest beyond pure curiosity, as the effect has recently
been harnessed for numerous applications involving par-
ticle self-assembly at fluid interfaces [10,13,14] and to
rationalize a number of observations in natural systems
[15–20]. Despite significant efforts to theoretically ration-
alize the capillary interaction between floating bodies
[1,4–7,12,21–30], direct measurements of this force are
relatively limited.
Some direct measurements of capillary attraction forces

have been performed on bodies that are rigidly fixed to a

force sensing apparatus rather than on floating bodies
[31–36]. In other works, the attraction force of floating
bodies has been indirectly extracted through measurement
of the velocity as two particles freely move toward one
another (for example, see Refs. [12,37]). The rate of change
of the velocity of approach can then be related to the net
hydrodynamic force. However, in order to isolate the
component due to mutual attraction, a drag law must also
be included in this computation, which is often complicated
due to the potentially subtle contact line dynamics [24] and
the mutual flow-induced interactions as the particles
approach [38]. Ultimately, only a few direct measurements
of the capillary attraction force between floating bodies
have been reported. Recently, several groups have used
optical micromanipulation to perform direct measurements
of the capillary forces between microscopic colloidal
particles at a fluid interface [39–41]. At the macroscopic
scale, some earlier work by Mansfield et al. measured the
“binding” force between two floating centimetric plates in
contact by gradually applying a known horizontal force
via a flexible thread and a torsion balance until the plates
separated [42]. However, very few parameters were
explored in their investigation and the force as a function
of plate spacing was not explored.
In this Letter, we report direct measurements of the

capillary attraction force between pairs of floating macro-
scopic disks on an air-water interface using a novel
experimental setup, directly compare our results to numeri-
cal simulations, and rationalize the dependence of the
capillary attraction force on the disk mass, radius, and
relative spacing.
The experimental configuration is shown in Fig. 1. Two

cylindrical disks with identical radius R and mass m were
placed on the surface of a water bath with density ρ and
surface tension σ. The water interface beneath the disk is
deformed by a mean displacement δ, which results from the
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equilibrium of the body’s weight mg⃗, hydrostatic force
F⃗ρgh, and capillary force F⃗σ [Fig. 1(a)] [43,44]. The disks
were 3D printed and made to be superhydrophobic using a
commercially available spray coating to increase the
advancing contact angle and thus ensure that the interface
remained pinned to the bottom perimeter of each disk. One
disk was initially held laterally in place by two rods that
were in contact with its inner vertical surface in order to
balance the capillary attraction force due to the neighboring
disk. A third rod was in contact with the second disk’s inner
vertical surface. This rod was mounted to a linear trans-
lation stage driven by a stepper motor, which allowed for
automated control of the distance d between the disks. The
first disk was embedded with a permanent magnet with
magnetic moment μ⃗ aligned along the coil axis. The bath
was surrounded by two coils with current i flowing in
opposite directions, which generated a constant magnetic
field gradient ∂xBxðiÞ ¼ βi along the coil axis [45]. The
permanent magnet was positioned at the geometric center
of the two-coil configuration and thus experienced a force
FM ¼ −μβi, where μ ¼ jμ⃗j. At the beginning of each
measurement, we started with the disks in contact with
one another and we progressively moved the rod (by steps
of Δd ¼ 0.2 mm) until a visible gap could be seen between

the disks. We defined this position as the disk spacing of
d ¼ 0. The disk spacing d was then increased by moving
the right disk a prescribed distance using the automated
translation stage. At each spacing, we gradually increased
the current i in the coils. When the magnetic force exceeded
the capillary force, the disk with the embedded magnet
(shown as the left-hand disk in Fig. 1) drifted away from its
partner and the current value was recorded. We repeated the
procedure by increasing the distance d between the disks up
to approximately 1 cm. For a pair of disks with masses m
and radii R, the critical value of current idðdÞ to achieve
disk separation was computed by averaging the results from
three disk pairs, on each of which three independent
measurements were performed. The capillary force
as a function of distance was then given by FxðdÞ ¼
−FMðdÞ ¼ μβidðdÞ. We emphasize that the critical value of
the current is recorded at the moment of separation, at
which the normal force on the disks from the vertical rods
vanishes. Thus the measurements are not influenced
by physical contact with the measurement apparatus.
Extended details of the experimental setup and protocol
can be found in Supplemental Material [46].
In Fig. 2(a) we present a sample experimental dataset of

the capillary attraction force Fx vs the distance d between
the disks. The force decreases monotonically with the
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FIG. 1. (a) Schematics of the experimental setup for direct
measurements of the attraction force between floating disks.
Relevant forces which lead to vertical equilibrium (floating) are
highlighted on the disk on the right. The capillary attraction force
F⃗x, which is balanced by the imposed magnetic force F⃗M, is
depicted on the disk on the left. (b) Photograph of two disks in the
experimental apparatus as they deform the free surface and attract
one another. See the video in Supplemental Material for a typical
experimental run [46].
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FIG. 2. (a) Capillary attraction force Fx vs distance d between
disks as measured in experiments and compared to numerical
simulations. Disks have radius R ¼ 1.0 cm and mass
m ¼ 0.90 g. Inset: Schematic of the geometrical configuration
considered in the numerical simulations. (b) Side view of disks at
d ¼ 0 (top) and d ¼ 0.78 cm (bottom) demonstrating presence of
inward tilt for d ¼ 0. α ¼ 1.22° inward tilt is numerically
predicted for d ¼ 0, as indicated by the red dashed line.
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spacing, as it is expected since the anomalous surface
displacement due to the neighboring disk decays as the
disks separate. Experimental data are compared to numeri-
cal simulations that solve the Young-Laplace equation for
the free surface shape using the disk perimeter as a
boundary condition. The disks were modeled as plates
with radius R, mass m, and infinitesimal thickness. In the
first set of simulations we fixed the disks so that no rotation
around the y axis was included (thus the disk remained
strictly parallel to the undisturbed free surface). We
computed the force and found that it adequately captures
the experimental force for large separation distances, but
was somewhat unsatisfactory in the short range. We thus
extended the numerical simulations by allowing for tilt
around the y axis (directly toward or away from the
neighboring disk), thus including both the balance of
moments and forces on the disk. For each combination
ofm, R, and d, the surface deformation δ and the tilt angle α
were determined uniquely by identifying the pair of values
(δ, α) for which the disks were in vertical equilibrium as
prescribed by

Fz ¼ Fσ;z þ Fg;z ¼ mg; ð1Þ

and rotational equilibrium as prescribed by

My ¼ Mσ;y þMg;y ¼ 0; ð2Þ

where Fσ , Mσ and Fg, Mg are forces and moments due to
surface tension and hydrostatic forces, respectively. Typical
values are δ≲ 0.2 cm and α≲ 2°, and the magnitude of
both δ and α decreases as the disks are separated. Once δ
and α were determined, the horizontal attractive force was
computed by summing the lateral contributions from sur-
face tension and hydrostatic pressure,

Fx ¼ −ðFσ;x þ Fg;xÞ; ð3Þ

where the overall minus sign is chosen to have Fx > 0 for
attraction. The attraction force corresponding to Eq. (3)
better captures the experimental behavior for both long and
short separation distances [Fig. 2(a)] with no fitting
parameters. We also present side view images of the disks
in Fig. 2(b), which experimentally confirm the presence of
an inward tilt for small disk spacings. We suspect that the
relatively small remaining discrepancy at small spacingsmay
be due to our lone approximation of the disks being of
negligible thickness. Despite the fact that the emergent tilt
angle is rather small, our model demonstrates that its
inclusion is necessary to adequately describe the capillary
attraction in the short range. Extended details on the numeri-
cal simulations can be found in Supplemental Material [46].
We proceeded by exploring the dependence of the

capillary force on the disk mass m and radius R. In
experiments, we first fixed the radius R ¼ 1.0 cm and
varied the mass from m ¼ 0.70 to 1.42 g. We observe that
the capillary force Fx monotonically increases with mass,
as expected for heavier bodies that induce larger surface
deformations. Experimental data and trends are similarly
well captured by numerical simulations. We then explored
the dependence of the attraction force on the disk radius by
fixing the mass at m ¼ 0.90 g and varying the radius from
R ¼ 0.8 to 1.4 cm in the numerical simulations. We find
that the capillary force decreases with the disk radius, a
consequence of the larger contact area and perimeter, which
result in smaller overall surface deformation.
The ensemble of experimental and numerical data

collected are presented in Fig. 3(a), in which the magnitude
of the force depends on both the mass and the radius of the
disks. In an attempt to isolate these dependencies, we
develop a scaling analysis for the typical magnitude of the
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FIG. 3. Ensemble of experimental (points) and numerical (lines) data for pairs of disks with different mass m and radius R.
(a) Dimensional capillary force Fx vs distance d between disks. (b) Dimensionless capillary force Fx=F0 vs dimensionless distance
between the disks d=lc. F0 is defined in Eq. (13).
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attraction force. Dimensional analysis suggests that the
attraction force could be described by the following
dimensionless law:

Fx

F0

¼ f

�
d
lc
;
δ

lc
;
R
lc

�
; ð4Þ

where f is an unknown function and F0 is a typical force
scale that must depend on the mass m. The relevant length
scale chosen is the capillary length, lc ¼

ffiffiffiffiffiffiffiffiffiffi
σ=ρg

p
, which

represents the distance over which hydrostatic pressure
balances curvature pressure due to surface tension (e.g., the
characteristic length of a fluid meniscus) [47]. For clean
water at room temperature, lc ¼ 2.7 mm. To facilitate the
scaling analysis, we assume small deformations δ ≪ lc,
large disk size R ≫ lc, and that the disks are close to each
other d ≪ lc. The net horizontal capillary force per unit
length acting on a disk scales as

Fσ;0

L
∼ σð− cos θi þ cos θoÞ; ð5Þ

where θi is the angle formed by the water free surface and
the disk in between the pair (along the x axis), and θo is the
angle that water forms with the far portion of the disk
(along the x axis). L is the characteristic length scale in y
of the interaction region over which the free surface is
disturbed from its axisymmetric profile in isolation. For a
single disk in isolation centered at r ¼ 0, the meniscus
takes the form of an outwardly decaying exponential,
uðrÞ ¼ −δe−ðr−RÞ=lc for r ≥ R, which is valid under our
assumptions δ ≪ lc and R ≫ lc [47]. From this expression,
it can be readily shown that the contact angle in equilibrium
is given by

θ ¼ δ=lc ð6Þ
to leading order. We further assume that R ≫ L, so that
outside of the interaction region θo ≈ θ, an assumption we
will revisit later. For disks that are nearly in contact
(d ≪ lc) we can also assume that θi ≪ θo, as the slope
of the interface in between the disks is much smaller than
that of the outer deformation. This assumption is physically
justified by the fact that the contact line is pinned at the
bottom edges of the disks; thus when the identical disks are
in very close proximity to one another, the fluid interface
spanning them is approximately flat.
The extent of the interaction region L along the y axis

can be estimated by expanding the disk equation in the
plane x ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − y2

p
þ Rþ d=2 for y=R ≪ 1 and recall-

ing that d=R ≪ 1 (since we have assumed d=lc ≪ 1 and
R=lc ≫ 1). To leading order we thus obtain
x=R ≈ ðy=RÞ2=2. As the extent of the interaction occurs
up to a lateral separation x ∼ lc, we obtain

L ∼
ffiffiffiffiffiffiffi
Rlc

p
ð7Þ

as the typical interaction length along the y direction. Using
the result derived in Eq. (7), it can be seen that the condition
R ≫ L is consistent with R ≫ lc, as initially assumed.
Substituting our results into Eq. (5) and expanding the

cosine terms, we find that the capillary attraction scales as

Fσ;0 ∼ σ
δ2R1=2

l3=2c

: ð8Þ

This result is consistent with recent rigorous asymptotic
approaches to the problem under the same assumptions
[30]. However, in order to complete our scaling analysis we
must finally estimate how δ scales with the other param-
eters. For a single disk in isolation the vertical force balance
required for flotation yields

mg ¼ πR2ρgδþ 2πRσ sin θ: ð9Þ

Upon substituting Eq. (6) into Eq. (9), we find

δ ¼ mg
πσ½ðR=lcÞ2 þ 2R=lc�

: ð10Þ

Note that ðR=lcÞ2 ¼ ρgR2=σ = Bo, often referred to as the
Bond number, which represents the relative influence of
gravity and surface tension in the vertical direction.
The hydrostatic contribution to the attractive force

(due to the spontaneous inward tilt angle α) is Fg;0 ¼
ρgδR2 sin α. In order to estimate α, we consider the
equilibrium of moments Mg;y ∼Mσ;y. Scaling of this equa-

tion yields ρgR4 sin α ∼ σδR3=2l−1=2c and, thus, sinα∼
l3=2c δR−5=2. We finally obtain

Fg;0 ∼ σδ2=
ffiffiffiffiffiffiffi
Rlc

p
: ð11Þ

We thus have

Fg;0

Fσ;0
∼
lc
R
; ð12Þ

where we see that under our assumption R ≫ lc the hydro-
static component of the attractive force is small relative to
the contribution from surface tension. We thus take our
characteristic attractive force F0 as the contribution from
capillarity alone in Eq. (8) with δ from Eq. (10):

F0 ¼
ðmgÞ2R1=2

π2σl3=2c ½ðR=lcÞ2 þ 2R=lc�2
: ð13Þ

Considering the explicit relationship between F0, δ, and
R through Eqs. (10) and (13), under our assumptions, the
nondimensional law in Eq. (4) reduces to

Fx

F0

¼ f

�
d
lc

�
: ð14Þ
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We normalize the force data by F0 and the spacing by lc
and we show that our results nearly collapse onto a single
curve [Fig. 3(b)]. This collapse is somewhat surprising
given that the vertical displacements δ are frequently large
in both our experiments and simulations, often on the same
order as the capillary length. However, in the derivation of
the scaling analysis, the condition δ ≪ lc is used only to
derive Eq. (6). Numerical solution of the axisymmetric
Young-Laplace equation for an isolated disk indicates that
θ ¼ δ=lc does in fact remain a decent approximation for
δ ∼ lc when R ≫ lc. The collapse suggests that we have
satisfactorily captured the leading order effects in the
problem. A more rigorous asymptotic approach may be
able to identify the next order corrections and further
rationalize the remaining spread in our data.
In this work, we performed direct measurements of the

capillary attraction between macroscopic bodies resting at
an air-water interface. Specifically, we measured the
attraction force between two centimetric disks as a function
of their radius, mass, and relative spacing. We comple-
mented the experimental study with numerical simulations
that compare well to the experimental data. We isolated
the role of the spontaneous inward tilt of the disks, which
was found to be necessary to quantitatively describe the
attraction force in the short range. In addition, we devel-
oped a scaling law for the capillary attraction force as a
function of the distance between the disks and achieved a
satisfactory collapse of our data over a range of disk masses
and radii. We expect our results to be directly relevant to a
number of natural and artificial systems, including living
organisms [48] and bioinspired microrobots [49–51] mov-
ing at the air-water interface.
Measurements have been performed by means of a

custom experimental setup based on a controllable mag-
netic applied force. In contrast to prior work where
magnetic forcing has been used to complement fluid-solid
interactions [52–54], here we use the magnetic force as a
tool to measure fluid forces without physical contact. Our
measurement platform could be readily adapted to quanti-
tatively explore more exotic effects such as the interac-
tion of anisotropic objects [55–57], objects on curved
interfaces [27,58–61], elastic structures [62], interactions
of particles and capillary waves [63–65], dynamic inter-
actions of particles [66–68], or even potentially the
“inverted Cheerios effect” [69].
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