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We study the transition between integrable and chaotic behavior in dissipative open quantum systems,
exemplified by a boundary driven quantum spin chain. The repulsion between the complex eigenvalues of the
corresponding Liouville operator in radial distance s is used as a universal measure. The corresponding level
spacing distribution is well fitted by that of a static two-dimensional Coulomb gas with harmonic potential at
inverse temperature β ∈ ½0; 2�. Here, β ¼ 0 yields the two-dimensional Poisson distribution, matching the
integrable limit of the system, and β ¼ 2 equals the distribution obtained from the complex Ginibre
ensemble, describing the fully chaotic limit. Our findings generalize the results of Grobe, Haake, and
Sommers, who derived a universal cubic level repulsion for small spacings s. We collect mathematical
evidence for the universality of the full level spacing distribution in the fully chaotic limit at β ¼ 2. It holds for
all three Ginibre ensembles of random matrices with independent real, complex, or quaternion matrix
elements.
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Introduction.—It has been a long discussed question
how classically integrable and chaotic behavior carries
over to the quantized world. A simple spectral measure
was found in the spacingbetween neighboring eigenvalues of
the corresponding Hamiltonian H. For closed systems it is
Hermitian, H ¼ H†, with real eigenvalues. Berry and Tabor
conjectured [1] for quantum integrable systems to generi-
cally follow the one-dimensional (1D) Poisson distribution

pð1DÞ
P ðsÞ ¼ e−s. In contrast, Bohigas, Giannoni, and Schmit

(BGS) conjectured [2] (see Ref. [3]) chaotic systems [4] to
follow random matrix theory (RMT) statistics in the corre-
sponding symmetry class. Initially Dyson [5] had offered a
first classification within RMT, distinguishing systems with-
out or with time reversal at (half-)integer spin which is the
celebrated “threefoldway.”Much evidence has been given to
support this spectral classification in quantum systems,
including neutron scattering, quantum billiards [2], and
the hydrogen atom in a magnetic field [6], to name a few;
see Refs. [7,8] for standard references. Starting from Berry’s
diagonal approximation [9] the BGS conjecture is now well
understood from a semiclassical expansion [10,11].

Non-Hermitian operators play an equally important role in
physics, e.g., in disordered systems [12] or quantum chromo-
dynamics (QCD) with chemical potential [13]. Shortly after
BGS, the above spectral distinction between integrable and
chaoticwas extended byGrobe,Haake, andSommers (GHS)
[14] to Markovian dissipative open quantum systems. These
follow a Lindblad master equation,

dρ
dt

ðtÞ ¼ LρðtÞ; ð1Þ

with L being the Liouville and ρ the density operator; see
Ref. [15]. Postponing a detailed discussion for our example of
a quantum XXZ spin chain—see Refs. [16,17]—the eigen-
values of L are real or come in complex conjugate pairs and
can be used to characterize integrable or chaotic behavior; see
below. Indeed this has been observed in many examples: for
dissipative chaotic systems [18], the QCD Dirac operator
[19], the adjacency matrix of directed graphs [20], and hard-
core bosons with asymmetric hopping on a one-dimensional
lattice at weak disorder [21]. In Ref. [14] GHS studied
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periodically kicked tops with damping and the corresponding
discrete quantum map. In the integrable limit they found
agreement between the nearest neighbor spacing in radial
distance s of its complex bulk eigenvalues and the two-
dimensional (2D) Poisson distribution

pð2DÞ
P ðsÞ ¼ π

2
se−πs

2=4; ð2Þ

which are local quantities. In the fully chaotic limit the spacing
distribution agrees with the corresponding distribution of the
Ginibre ensemble [22] of complex Gaussian non-Hermitian
random matrices (GinUE), given by Ref. [14],

pGinUEðsÞ ¼
�Y∞

k¼1

Γð1þ k; s2Þ
k!

�X∞
j¼1

2s2jþ1e−s
2

Γð1þ j; s2Þ ; ð3Þ

with Γð1þ k; s2Þ ¼ R∞
s2 tke−tdt being the incomplete Γ

function. GHS conjectured that the local spectrum of a
generic chaotic dissipative open quantum system in the bulk
should follow the same statistics. This was somewhat
surprising, as they showed that the complexGinibre ensemble
leading to Eq. (3) does not satisfy the global symmetries of
dissipative open quantum systems [14], unlike its real
counterpart. Grobe and Haake showed in Ref. [23] that,
based on these symmetries, using perturbative arguments for
small distance s, the repulsion is universally cubic. This
repulsion is shared by the complex Ginibre ensemble (3), as
well as by a larger class of complex normal random matrices
[24]. The global statistics of Lindblad operators has also been
compared to random matrices; see Refs. [25–28].
Our goals are, first, to provide a further example for the

GHS conjecture for complex spectra of integrable or
quantum chaotic systems to be true, given by boundary
driven quantum spin chains. These are many-body systems
with no meaningful semiclassical limit, so the term quan-
tum chaos is understood as the absence of integrability or
weak coupling thereof, while its rigorous definition is
still lacking. Second, we will show that in the intermediate
regime the full spacing distribution is very well described
by a static 2D Coulomb gas at inverse temperature
β ∈ ð0; 2� in a harmonic potential. Its joint distribution
of the set z of N point charges at rescaled positionsffiffiffiffiffiffiffiffi
2=β

p
zi¼1;…;N ∈ C [29] reads [30]

PβðzÞ ∝ exp

�
−
XN
i¼1

jzij2 þ
β

2

XN
i≠j

ln jzi − zjj
�
: ð4Þ

For β ¼ 0 this leads to the Poisson distribution (2) [18],
whereas β ¼ 2 corresponds to the level spacing distribution
(3) [14]. Third, we collect mathematical evidence for the
fully chaotic case (3) at β ¼ 2 to be universal in the bulk of
the spectrum, regardless of the constraints [14]. With bulk
we mean to stay macroscopically away from any edge or

critical points (here, the real line) of the spectrum. This
universality holds for the complex, real [31], and quatern-
ion Ginibre ensemble—to be presented here—and for non-
Gaussian extensions [32] of the two former ones. This is in
contrast to random matrices with real spectra, where
quantum chaotic behavior is distinct for the three Dyson
classes, corresponding to a 1D log gas at different values
β ¼ 1, 2, 4. For complex bulk eigenvalues of chaotic
systems, the possibility of distinguishing their global
symmetry is thus lost. To prepare our 2D data from the
Liouville operator L for a comparison, we need to unfold
the complex spectrum. While this is straightforward for real
spectra [8], we discuss the literature [19] and present our
method below.
Integrable and nonintegrable quantum spin chains.—

The system we consider is a Heisenberg XXZ Hamiltonian
H of N spins 1=2, comprising nearest and next-to-nearest
neighbor interactions,

H ¼ J
XN−1

l¼1

ðσxl σxlþ1 þ σyl σ
y
lþ1 þ Δσzlσ

z
lþ1Þ

þ J0
XN−2

l¼1

ðσxl σxlþ2 þ σyl σ
y
lþ2 þ Δ0σzlσ

z
lþ2Þ; ð5Þ

with J, J0,Δ,Δ0 ∈ R. We denote the three Pauli matrices by
σαl , α ¼ x, y, z, for each single spin l ¼ 1;…; N. With each
spin a dephasing operator

Ll ¼
ffiffiffi
γ

p
σzl ; l ¼ 1;…; N and γ > 0 ð6Þ

is associated. Additionally, we introduce dissipation of
polarization at the two ends of the spin chain via the
Lindblad operators

L−1 ¼
ffiffiffiffiffi
γþL

q
σþ1 ; L0 ¼

ffiffiffiffiffi
γ−L

p
σ−1 ;

LNþ1 ¼
ffiffiffiffiffi
γþR

q
σþN; LNþ2 ¼

ffiffiffiffiffi
γ−R

p
σ−N; ð7Þ

where γ�L , γ�R > 0 and σ�l ¼ σxl � iσyl . The Liouville
operator L acting on a density operator ρ in the master
equation (1) is given by [16,17]

Lρ ¼ −i½H; ρ� þ
XNþ2

l¼−1
ð2LlρL

†
l − fL†

l Ll; ρgÞ: ð8Þ

The commutator and anticommutator are denoted by ½·; ·�
and f·; ·g, respectively; see Ref. [15].
What we are interested in is the spectral statistics of the

Liouville operator L considered as a ð4N − 1Þ × ð4N − 1Þ
real matrix, acting on the vector space of density operators.
The reduction in dimension by 1 results from the fixed trace
condition on ρ and is represented by the identity matrix.
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The operator L is real because ρ → Lρ preserves the
Hermiticity. The statistics of L should indicate whether
the Lindblad master equation (1) behaves in an integrable
or chaotic way. For this purpose we recall some properties
of the operator L in our example.
Switching off all incoherent processes γ ¼ γ�L ¼ γ�R ¼ 0,

the operator L becomes a real antisymmetric (because of
Trρ1½H; ρ2� ¼ −Tr½H; ρ1�ρ2) and chiral (due to ½H; ρ�T ¼
−½H; ρT �) matrix so that the spectrum becomes 1D and is
purely imaginary and symmetric about the origin. When
also suppressing the next-to-nearest neighbor interactions
(J0 ¼ 0), the spectrum is completely integrable. With
increasing J0 ≠ 0 chaotic behavior will take over, and
Wigner’s β ¼ 1 statistics in the bulk of the spectrum
applies; see Ref. [33] for a review of the standard 1D
RMT analysis of this setup.
The situation changes drastically when the dissipative

processes are switched on (γ, γ�L , γ�R ≠ 0). Then, the
Liouville operator L becomes a real nonsymmetric
matrix, and its eigenvalues spread into the complex plane.
Nonetheless, there is still a good quantum number
which has to be taken into account—namely, the total
spin polarization S ¼ P

N
l¼1 σ

z
l . It keeps the coherent

processes invariant due to ½H; S� ¼ 0, while all additional
incoherent dissipative processes result in the following
weak symmetry of the Liouvillian [17],

½LðρÞ; S� ¼ Lð½ρ; S�Þ; ð9Þ

which is equivalent to the vanishing commutator of the
matrix representations of L and ½S; ·�.
Let js; ni be an eigenstate of H with Sjs; ni ¼ sjs; ni,

and let s ¼ −N=2;−ðN − 2Þ=2;…; N=2. Then, the eigen-
value equation of the state js; nihs0; n0j under the adjoint
action of S is

½S; js; nihs0; n0j� ¼ ðs − s0Þjs; nihs0; n0j: ð10Þ

Defining M ¼ N − sþ s0 ∈ f0; 1;…; 2Ng, the dimension
κ of the eigenspace of the fixed quantum number s − s0 ¼
N −M is given by κ ¼ ð2NM Þ − δNM, where the Kronecker
delta represents the identity matrix which obviously
belongs to the M ¼ N state space. Therefore, L decom-
poses into block matrices, and one needs to study the
spectral statistics of each of these matrices separately. Since
we are interested in a good statistical error, it is favorable to
choose M close to N, as then the number of eigenvalues
κ ∼ 22N=N grows exponentially quickly for large N.
Comparing data with predictions.—We have generated

four realizations of the Liouville operator (8) where, for all
four cases, N ¼ 10 and M ¼ 7, and we set the scale to
J ¼ 1. Thus, we have had in total 77 520 eigenvalues per
case to analyze.
(a) The boundary driven XX chain (Δ ¼ 0) with bulk

dephasing. The parameters are chosen as J0 ¼ 0, γþL ¼ 0.5,

γ−L ¼ 1.2, γþR ¼ γ ¼ 1, and γ−R ¼ 0.8. The model is
equivalent to the Fermi-Hubbard chain with imaginary
interaction U ¼ iγ with off-diagonal boundaries—see
Ref. [34]—which is known to be Bethe ansatz integrable.
According to the GHS conjecture, we expect Poisson
statistics for the Liouvillian spectrum; see Fig. 1(a).
(b) The isotropic Heisenberg XXX chain (Δ ¼ 1)

with pure-source and pure-sink driving. The parameters
are J0 ¼ 0, γþL ¼ 0.6, γ−R ¼ 1.4, γ−L ¼ γþR ¼ γ ¼ 0 in this
regime. The steady state (zero mode) of this problem is
known to be exactly solvable [16]; however, the full
Liouvillian spectrum shows nonintegrable behavior [see
Fig. 1(b)].
(c) The XXX chain (Δ ¼ 1) with arbitrary polarizing

boundary driving. Here, we chose the parameters J0 ¼ 0,
γþL ¼ 0.5, γ−L ¼ 0.3, γþR ¼ 0.3, γ−R ¼ 0.9, and γ ¼ 0. The
bulk Hamiltonian of this model is well known to be
integrable via the Bethe ansatz, but with the boundary
driving not even the steady state seems to be exactly
solvable. The spectrum in Fig. 1(c) confirms that its
dynamics is fully chaotic, according to the GHS conjecture.
(d) The XXZ chain with nearest neighbor and next-to-

nearest neighbor interactions. We have chosen J0 ¼ 1,
Δ ¼ 0.5, andΔ0 ¼ 1.5 with the same dephasing parameters
as in (c). This time, even the bulk Hamiltonian is non-
integrable (quantum chaotic), so we expect Ginibre sta-
tistics following the GHS conjecture, which is confirmed in
Fig. 1(d).

(a)

(c) (d)

(b)

FIG. 1. Comparison of the level spacing distributions for
various Liouville operators (8), the analytical spacing distribu-
tions (2) (Poisson β ¼ 0, dotted line) and (3) (Ginibre β ¼ 2,
dashed line) as well as fits to general Coulomb gas (4)
simulations [(b) and (d), solid lines]. Unfolding (13) is used
with the smearing parameter σ ¼ 4.5s̄ [see Eq. (13)], where the
mean spacing varies from s̄ ¼ 0.0036 to 0.0045 for the datasets
(a)–(d). The first moment of all spacings is normalized to unity.
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All four datasets are depicted in Fig. 1, illustrating the
integrable [Fig. 1(a)], intermediate [Fig. 1(b)], and appa-
rently fully chaotic cases [Figs. 1(c) and 1(d)]. Note that the
intermediate case [Fig. 1(b)] flows closer (and is expected
to converge) to fully chaotic statistics by increasing the
dimension κ. We compare this with the 2D Poisson
distribution (2), the distribution of the numerically gen-
erated Coulomb gas (4) with the best fit for β, and the level
spacing distribution (3) of the complex Ginibre ensemble.
The Kolmogorov-Smirnov distances [35] between the
empirical distributions of the spectrum of L, and each of
these curves (after fitting β) are listed in Table I. The
spacings for the Coulomb gas are obtained by generating
points with the distribution (4) by using the Metropolis
algorithm, following Ref. [36], and then determining the
spacing numerically. Figure 1 confirms our expectations of
an extended GHS conjecture [14,23] for dissipative open
quantum systems to hold, even without classically chaotic
correspondents.
Unfolding of complex spectra.—In order to compare the

spectrum of L with the spectral statistics of the 2D
Coulomb gas (2)–(4), we need to unfold the spectrum.
This means that we have to separate the fluctuations (fl),
which are supposedly universal, from the global, averaged
(av) spectral density, which is system specific:

ρðx; yÞ ¼
XN
i¼1

δð2Þðz − ziÞ ¼ ρavðx; yÞ þ ρflðx; yÞ; ð11Þ

where z ¼ xþ iy. For real spectra unfolding is achieved by
introducing the cumulative spectral function and fitting the
smooth part ηðxÞ ¼ R

x
−∞ ρavðtÞdt [8]. For complex spectra

this is more involved. Following Ref. [19], unfolding is a
map

z → z0 ¼ x0 þ iy0 ¼ uðx; yÞ þ ivðx; yÞ; ð12Þ

to be found, that satisfies certain conditions. First, after
unfolding the density has to be unity (or constant),
ρavðx0; y0Þ ¼ 1, or in other words the Jacobian of the
transformation (12) has to cancel the density before
unfolding, dx0dy0 ¼ ρavðx; yÞdxdy. This is certainly not
unique, and we believe that, second, local isotropy has to be
achieved, e.g., using conformal maps [19]. Following the

symmetry of their data, Markum et al. [19] proposed
unfolding in strips parallel to the x axis, in choosing
y0 ¼y and thus x0 ¼R

x
−∞ρavðt;yÞdt¼uðx;yÞ. Apparently

for more general datasets this choice is not ideal, e.g.,
for products ofM Ginibre matrices where the density at the
origin is singular [37]. Its local statistics is known to still
follow the complex Ginibre ensemble [38], making proper
unfolding crucial.
In fact we found a much simpler method following

Eq. (11) by approximating ρavðx; yÞ by a sum of Gaussian
distributions around each eigenvalue zj,

ρavðx; yÞ ≈
1

2πσ2N

XN
j¼1

exp

�
− 1

2σ2
jz − zjj2

�
: ð13Þ

The measured spacing at a point z0 is then simply
multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρavðx0; y0Þ

p
. Testing this on spectra of

the products of random matrices, the choice σ ¼ 4.5s̄ in
terms of the global mean spacing s̄ leads to very good
results; see Ref. [39]. This method is applied to our datasets
in Figs. 1(a)–(d).
Randommatrix universality.—The question raised by the

conjecture of GHS was why the fully chaotic case should
be compared with the predictions of the complex Ginibre
ensemble. Grobe et al. [14] showed that, due to Hermiticity
constraints, generic dissipative open quantum systems lead
to a spectrum of real and complex conjugate eigenvalue
pairs. Thus, one would expect the real or quaternion
Ginibre ensemble (GinOE or GinSE) sharing this property
to apply, and not the GinUE. However, Grobe et al. found
an agreement of their data from periodically kicked tops
with damping with the GinUE—results for the GinOE or
GinSE were not available at the time.
While the results for the GinSE became available soon

after the publication of Ref. [42], including the spacing
distribution at the origin [which is different from the
GinUE (3)], the GinOE was independently solved much
later by three groups [31,43,44]. They are given by so-
called Pfaffian point processes, with matrix valued kernels
as the main building block.
Once all density correlation functions are known, all

spectral information is given, including the spacing. While
close to the real line all three ensembles differ, it was shown
that at the edge of the spectrum the GinSE [45] and GinOE
[31] agree with the GinUE [46]. It is therefore natural to ask
whether or not this agreement continues to hold in the bulk.
For the GinOE this was answered affirmatively in Ref. [31],
and in the Supplemental Material [39] we show that this
also holds for the GinSE. Below we give a heuristic
argument (see also Ref. [11]) for why all three symmetry
classes yield the same spacing distribution in the bulk, and
it is thus universal.
The joint probability density function (jpdf) of eigen-

values for all three Ginibre ensembles read [22,47]

TABLE I. The Kolmogorov distance between the empirical
data shown in Fig. 1, the Poisson distribution (2), the fitted value
for β (specified in the inset) of the Coulomb gas, and the Ginibre
spacing distribution (3).

System Poisson Fitted Coulomb β Ginibre

(a) 0.015 � � � 0.15
(b) 0.10 0.0092 (β ¼ 1Þ 0.058
(c) 0.15 � � � 0.012
(d) 0.16 0.0094 (β ¼ 1.9) 0.012
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PðkÞ
GinOEðzÞ∝ jΔMðzÞj2ΔkðxÞ

YM
i;j¼1

ðzi−z�jÞ
Yk
i¼1

YM
j¼1

jzj−xij2

×
Yk
l¼1

e−ð1=2Þx
2
l

YM
j¼1

sgn½ImðzjÞ�erfc½
ffiffiffi
2

p
ImðzjÞ�

×e−ð1=2Þðz
2
jþz�2j Þ;

PGinUEðzÞ∝ jΔNðzÞj2
YN
j¼1

e−jzjj2 ;

PGinSEðzÞ∝ jΔMðzÞj2
YM
i>j

jzi−z�j j2
YM
j¼1

jzj−z�j j2e−jzjj2 : ð14Þ

Here, ΔNðaÞ ¼
Q

N
j>kðaj − akÞ denotes the Vandermonde

determinant and erfc the complementary error function.
The N ¼ kþ 2M eigenvalues in the GinOE are ordered to
yield a positive density, and k counts the number of real
eigenvalues; see, e.g., Refs. [31,43,44] for details, and for
the GinSE N ¼ 2M.
For large N there are only k ∝

ffiffiffiffi
N

p
real eigenvalues xl on

average [48], and thus we consider M ∼ N=2. Raising the
Vandermonde to the exponent leads to the Coulomb gas
picture (4) at β ¼ 2 for the GinUE. Notice that the other
two ensembles are not proportional to jΔNðzÞjβ for β ¼ 1,
4. The limiting spectral density is constant on a disk of
radiusOð ffiffiffiffi

N
p Þ for all three Ginibre ensembles, and also for

Coulomb gases (4) for all β > 0; see, e.g., Ref. [49] for a
review. The local bulk statistics is defined by zooming into
the vicinity of radius R ¼ Oð1Þ of a few mean level

spacings around a bulk eigenvalue z0, chosen far away
from the real axis and the edge of the support. Close to z0,
complex conjugate and real eigenvalues are of the order
Oð ffiffiffiffi

N
p Þ away from z0 and thus do not contribute to the

local spectral statistics. Hence all jpdf’s (14) become
locally proportional to

∼
Y

j∶jzj−z0j<R

jzj − z0j2 ð15Þ

for large N. Thus, all three ensembles coincide locally and
share the GinUE spacing distribution (3). In Fig. 2, we
illustrate this argument with Monte Carlo simulations of all
three Ginibre ensembles in the bulk, finding perfect agree-
ment. Very recently numerical evidence has been given for
four further symmetry classes to follow the spacing (3) of
the GinUE [50]. While Hamazaki et al. identified two
ensembles where the spacing differs, it remains to be seen
how many classes emerge in the bulk from the complete list
of non-Hermitian ensembles [51–53].
Conclusions.—We have studied universal spectral prop-

erties of dissipative open quantum systems. Their corre-
sponding Liouville operator L generically exhibits complex
eigenvalue statistics. In our example we have numerically
diagonalized boundary driven quantum spin chains of the
XXZ type, with nearest and next-to-nearest neighbor
interactions with different sets of couplings. Depending
on these parameters, it is known that the system undergoes
a transition from integrable to chaotic behavior. The
spacing distribution in radial distance between the complex
eigenvalues of L has been shown to be an efficient measure
to observe this transition. Generalizing the conjecture of
Grobe, Haake, and Sommers for the extreme cases, we have
shown that the intermediate statistics is very well described
by a two-dimensional Coulomb gas with harmonic poten-
tial by fitting to an inverse temperature β ∈ ½0; 2�.
Furthermore, we have generalized the universality argu-
ment of these authors from a cubic repulsion for small
spacing in the chaotic case β ¼ 2 to hold for the full
distribution in all three Ginibre ensembles. Here, we have
contributed analytically to the quaternion case and have
illustrated this with numerical evidence.
Several open questions deserve further study. While for

quantum systems with real eigenvalues the emergence of
random matrix statistics in the chaotic regime is well
understood, using a semiclassical expansion, such an
approach is not developed here. Further examples for
physical systems with complex eigenvalues should be
studied throughout the transition region from integrable
to chaotic behavior to see whether the description by a 2D
Coulomb gas is indeed universal.
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the spectrum. For the latter we use the standard 2N-dimensional
representation of an N-dimensional quaternionic matrix, making
the complex eigenvalues unique; see Ref. [22]. An ensemble of
1000 500 × 500 matrices has been generated in a Monte Carlo
simulation. Here, the unfolding is trivial due to a uniform density
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