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Over the last few years, parity-time (PT ) symmetry has been the focus of considerable attention. Ever
since, pseudo-Hermitian notions have permeated a number of fields ranging from optics to atomic and
topological physics, as well as optomechanics, to mention a few. Unlike their Hermitian counterparts,
nonconservative systems do not exhibit a priori real eigenvalues and hence unitary evolution. However,
once PT symmetry is introduced, such dissipative systems can surprisingly display a real eigenspectrum,
thus ensuring energy conservation during evolution. In optics, PT symmetry can be readily established by
incorporating, in a balanced way, regions having an equal amount of optical gain and loss. However, thus
far, all optical realizations of such PT symmetry have been restricted to a single transverse dimension
(1D), such as arrays of optical waveguides or active coupled cavity arrangements. In most cases, only the
loss function was modulated—a restrictive aspect that is only appropriate for linear systems. Here, we
present an experimental platform for investigating the interplay between PT symmetry and nonlinearity in
two-dimensional (2D) environments, where nonlinear localization and soliton formation can be observed.
In contrast to typical dissipative solitons, we demonstrate a one-parameter family of soliton solutions that
are capable of displaying attributes similar to those encountered in nonlinear conservative arrangements.
For high optical powers, this new family of PT solitons tends to collapse on a discrete network—thus
giving rise to an amplified, self-accelerating structure.
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Absorption and diffraction have always been limiting
factors in fully exploiting the potential of light in both
science and technology. In addressing these two funda-
mental problems, two main avenues have been pursued:
(i) optical amplification in order to overcome losses and
(ii) usage of optical solitons to compensate for dispersive
forces via optical nonlinearities [1]. While each of these
components alone has been successful in dealing with these
issues, the combined use of these two approaches has been
thus far quite challenging. This is due to the fact that any
restoration of conservative features requires a delicate
adjustment of the spectrum. In case this condition is not
met, this leads to a decay or an explosive amplification,
which is eventually limited by gain saturation [2]. In the
latter scenario, dissipative solitons can appear in the
system—occasionally resting on a constant background
because of stability requirements. In contrast, in parity-time
(PT )-symmetric systems [3,4], it is possible to restore a
quasiconservative setting that is free of such constraints. In
recent years, several studies have shown that optical
systems endowed with PT symmetry can enable unusual
and previously unattainable light propagation features
[5–23]. These include, among others, double refraction

and band merging [6,13], unidirectional invisibility
[11,23], abrupt phase transitions and power oscillations
[5,24], as well as unidirectional propagation [5,10,11], to
mention a few. Naturally, by introducing nonlinearity, one
could expect an even richer ground for new and unexpected
phenomena. In this respect, it has been suggested, in a
number of works, that entire soliton families do exist in
one- and two-dimensional PT -symmetric arrangements
with Kerr nonlinearities [13,18,25]. However, an exper-
imental observation of such effects is still lacking—
especially in 2D periodic configurations where soliton
behavior depends critically on the lattice dimensionality
[26,27]. To some extent, one can appreciate this emerging
complexity by considering the properties of the con-
servative nonlinear Schröedinger equation with a focusing
Kerr nonlinearity [25,27]. While the soliton energy in 1D
systems is inversely proportional to their width, in 2D this
quantity remains constant [1,27]. Even more importantly, in
the latter case, the field distribution can undergo a cata-
strophic collapse, as the contraction does not require
additional power.
In this Letter, these intriguing properties are observed in

a PT -symmetric system, except this time the collapse is
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arrested by the inherent discreteness of the lattice [28], built
through an internal gain, loss and index modulation. In
order to realize two-dimensional PT -symmetric solitons,
we make use of the newly developed concept of synthetic
dimensions [28,29]. By combining short- and long-range
interactions [30], we experimentally implement a discrete
two-dimensional lattice, which features a unique class of
solitonic solutions. In these lattices, we demonstrate linear
and nonlinear beam evolution as well as nonlinear locali-
zation. In addition to immobile solitons, in 2D we observe
self-accelerating nonlinear wave packets—an effect never
reported before.
Our experimental platform [see Fig. 1(a)] is based on

four slightly dissimilar paths having a fiber length of
approximately 30 km. They are grouped in two pairs, each
standing for one synthetic transverse dimension (see the
Supplemental Material [31], Notes 1, 2), as demonstrated
for 1D [16,32–35] and 2D [28,30] lattices. The two inner
paths A and B differ by ΔLinner ¼ LA − LB ≈ 600 m
(ΔT inner ¼ 3 μs), while the two outer paths C and D differ
by ΔLouter ¼ LC − LD ≈ 6 m (ΔTouter ¼ 30 ns). As shown
in Fig. 1(a), an initial seed pulse is injected via a fiber
optical coupler into the outer left path C and splits into two
pulses (step Ia and Ib) at the first 50=50 coupler at the
entrance of the two inner paths A and B. After passing
through the second 50=50 coupler, the pulses split again
(step IIa and IIb) and propagate as pairs through the outer
paths C and D. They return with varying delay at the first
50=50 coupler after a mean round trip time T ≈ 300 μs and
this process starts again. After passing path A (B), x
increases (decreases) by one, which is equivalent to a step
to the right (left) on the 2D synthetic lattice. Moreover, after
propagating through the outer path C (D), y increases
(decreases) by one, corresponding to a step up (down) on
the lattice. In this way, any direction through the 2D lattice
is equivalent to a combination of round-trips through the
four different paths [see pathways in Fig. 1(b)] and vice
versa. The pulse sequence evolving in the system is then
measured by photo detectors [blue curves in Fig. 1(c)],
sampled electronically [black dashed curves in the insets of
Fig. 1(c)], and mapped onto a 2D discrete lattice in x and y
coordinates [30] [see inset in Fig. 1(c) for time steps m ¼ 3
corresponding to the section of the total time trace marked
by red dashed lines].
Given that we use 22 ns long pulses, pulse dispersion

is negligible [36] and the dynamics in this system are
well described by the complex amplitudes amx;y=bmx;y
and cmx;y=dmx;y of the pulses traveling through path A and
B (short or long inner paths) and path C and D (short
or long outer paths), respectively. By interpreting the
number of roundtrips m as a discretized time variable
and the subscripts (x, y) as the Cartesian position on the
synthetic lattice displayed in Fig. 1(b), the pulse evolution
in the inner loop can then be described by the following
equations

amx;y ¼
ffiffiffiffiffi
G0

2

r
ðcm−1

xþ1;y þ idm−1
xþ1;yÞ expðiφa þ iχPÞ; ð1Þ

bmx;y ¼
ffiffiffiffiffiffiffiffi
1

2G0

r
ðdm−1

x−1;y þ icm−1
x−1;yÞ expðiφb þ iχPÞ; ð2Þ

while in the outer loop by

cmx;y ¼
ffiffiffiffiffi
G0

2

r
ðamx;yþ1 þ ibmx;yþ1Þ expðiφc þ iχPÞ; ð3Þ

dmx;y ¼
ffiffiffiffiffiffiffiffi
1

2G0

r
ðbmx;y−1 þ iamx;y−1Þ expðiφd þ iχPÞ: ð4Þ

FIG. 1. Light propagation in a 2D mesh lattice. (a) The inner
(amx;y and bmx;y) and outer (cmx;y and dmx;y) pair of fibers are connected
via 50=50 couplers. (b) The PT -symmetric 2D synthetic lattice is
virtually mapped accordingly to the arrival time of the pulses in
each path (PM: phase modulation). (c) The pulse amplitudes are
photodetected (blue line), sampled electronically (black dashed
line), and mapped onto a 2D spatially x-y representation.
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New pulses are formed by interference inside the 50=50
coupler as reflected by the second term of Eqs. (1)–(4).
The third term represents position and round trip dependent
phases φa, φb, φc, and φd imprinted by phase modu-
lators (PM) in order to ensure 2D PT symmetry [26] [see
Fig. 1(b) and the Supplemental Material [31], Note 9).
Nonlinear phase modulation is induced by the action of the
Kerr nonlinearity in the optical fiber [1], which is repre-
sented by an effective factor χ and proportional to the pulse
power (P) (see the Supplemental Material [31], Note 7). G0

stands for the adjustable net gain or loss [G0 ¼ Gð−1Þm]
introduced by the joint action of acousto-optic (AOM) and
Mach-Zehnder modulators (MZM) and erbium-doped fiber
amplifiers (EDFA). For an idle transmission ratio of AOMs
and MZMs of 80%, all losses of the system are compen-
sated by EDFA, thus restoring energy conservation (G ¼ 1)
and enabling a considerable increase in propagation steps.
Still pulses can easily be amplified [6] up to a value of
GMAX ¼ 1.25 per round trip.
In order to introduce 2DPT symmetry, an antisymmetric

gain modulation must be imposed [26], which is
here implemented by amplifying and attenuating the shorter
(longer) inner and outer loops in a balanced way. Similarly,
the simplest phase modulation that satisfies the 2D PT -
symmetry condition was applied, following the pattern
displayed in Fig. 1(b) (see the orangemarks) with a constant
phase shift φ0 (see the Supplemental Material [31], Note 6
and [37]). Interestingly, this PT -symmetric phase modu-
lation as depicted in Fig. 1(b) creates zigzag-shaped poten-
tial barriers along the lattice, akin to those expected from
Peierls-Nabarro (PN) effects [38]. As a result of this phase
and gain-loss pattern, the unit cell of the lattice is doubled
[see dashed square in Fig. 1(b)] and thus the two original
bands [28] of the linear spectrum split into four in total.
Under linear conditions (χ ¼ 0), the band structure of our
system is given by the following dispersion relation

cosθ ¼�1

8

�
−2 cosðgÞ þ cosðk−Þ− 4 cosðφ0Þ

× sin2
�
kþ

2

�
�

ffiffiffi
2

p
cos

�
kþ

2

�
× ½14− 6 cosð2φ0Þ

þ 4 cosðφ0 − gÞ þ 4 cosðφ0 þ gÞ þ cosð2φ0 − k−Þ
þ 4 cosðφ0 þ k−Þ þ 4 cosðφ0 − kþÞþ 4 cosðg− kþÞ

þ 4 cosðgþ k−Þ− 2 cosðkþÞþ cosðφ0 þ kþÞ�1=2
�
;

ð5Þ

which was obtained by inserting the evolution Eqs. (1)–(4)
into a Floquet-Bloch ansatz of the form e−iθeiðxkxþykyÞ [39].
Here, the phase and amplitude modulation intensities are
denoted by φ0 and g ¼ −2i lnðGÞ, respectively. θ stands for
the propagation constant, kþ and k− represent, respectively,
kx þ ky and kx − ky, where kx and ky are the Bloch quasi

momenta (see the Supplemental Material [31], Notes
6, 8). In the passive (conservative) case (G ¼ 1.0;φa ¼
φb ¼ φc ¼ φd ¼ 0), the systems eigenvalues are real [see
Fig. 2(a)] and hence light transport performs a 2D
ballistic walk [28]. However, for G > 1.0 and without any
phase modulation, the band structure becomes complex
[ImðθÞ > 0)] and hence PT -symmetry is broken [see
Figs. 2(b) and 2(c)]—causing the power to grow exponen-
tially during propagation, as shown in Fig. 2(e) for φ0 ¼ 0
and 0.3π. In order to restore pseudo-Hermiticity, the sym-
metric phase potential must be strong enough, so that PT
symmetry is recovered and the average energy is conserved
during propagation, which is consistent with a real-valued
band structure [see Figs. 2(d) and 2(e) for φ0 ¼ 0.6π].
In the range of values where PT symmetry is restored,

e.g., G ¼ 1.1 and φ0 ¼ 0.6π, where the band structure is
real [ImðθÞ ¼ 0] and exhibits a gap, its upper dispersion
branch is similar to that associated with waves propagating
in a bulk material since it has a constant positive curvature
over a wide range of Bloch momenta. Importantly, a
specific narrow region in the Brillouin zone can be excited
using a wave packet that is relatively broad in real space.
In this configuration, an excitation promoting a selective
population within the central point Γ (kx ¼ ky ¼ 0) of the
upper band is carried out by launching a train of rectangular
pulses comprising of a Gaussian envelope Gwðx; yÞ ¼
Aw exp½−ðx2 þ y2Þ=w2� along the synthetic x and y axis
[see Fig. 3(a)]; for more details concerning initial con-
ditions, see the Supplemental Material [31], Note 10).

FIG. 2. Band structure of a 2D PT -symmetric mesh lattice and
its respective quasiconservative regions. (a) Passive band struc-
ture (G ¼ 1.0; φ0 ¼ 0). (b)–(d) Band structure in the presence of
gain or loss of G ¼ 1.1 and phase potential φ0 of (b) 0, (c) 0.3π,
(d) 0.6π. (e) Experimental observation of the energy evolving as a
function of round trips m.
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In this case, a variable amplitude (Aw) is used while the
width (w) is fixed in such a way so as the 1=e drop in
intensity occurs after six sites.
At an input power of approximately 0.208 mW, the field

distribution experiences linear diffraction and spreads
diagonally in the x-y plane in this synthetic lattice [see
Figs. 3(c)–3(e)] due to the orientation of the phase potential
lines [Fig. 1(b)]. By gradually increasing the input power
to 1.1 mW, 2D PT solitons start to appear [see Figs. 3(f)–
3(h)]. Numerical simulations show that in this regime,
the soliton lifetime strongly depends on the soliton total
energy ET ¼ P

N
x;y¼0 jax;yj2 þ jbx;yj2 and the respective

gain factor. As in the case of 1D PT mesh lattices
[13,25,26], these solitons also belong to a one-parameter
family. In this respect, the 2D PT system studied here
behaves similarly to that of its Hermitian counterpart and
therefore allows the solitons to adapt their amplitudes to
their widths.

Similar to Townes-like solitons in conservative 2D
nonlinear Schröedinger systems [27,40], the 2D PT -
solitonic waves are intrinsically unstable. Figure 4(a)
displays the dependence of the soliton propagation constant
(eigenvalue θ) as a function of the total energy (E) for both
a conservative (G ¼ 1.0) and a non-Hermitian [3,4] lattice
(1.01 ≤ G ≤ 1.76). Note that the intensity profile of low
energy soliton solutions reflects the asymmetry of the
lattice showing two nonequivalent diagonal directions
[compare Figs. 3(e) and 3(h)]. In contrast, high energy
solutions appear more symmetric in shape when their
width almost approaches one elementary PT unit cell
[see Fig. 3(h)], thus corresponding to a highly localized
soliton trapped between two zigzag-shaped phase potential
barriers (acting as a Peierls-Nabarro barrier [38,41]).
Similarly, Fig. 4(b) depicts the eigenvalue-soliton width
curve, where the field distribution along the diagonal x ¼ y
was fitted with a Gaussian function. Interestingly, the
conservative soliton line (dotted black line) determines
the threshold of the propagation constant beyond which
nonconservative nonlinear localized stationary solutions
(i.e.,G > 1.0) cannot exist. As the gain factor increases, the
corresponding propagation constant curves for PT solitons
proportionally decrease and their widths rapidly become
narrower.
Also, nonconservative soliton eigenvalues present an

initial total energy ET threshold that makes them highly
unstable and which immediately blows up, releasing a large
amount of energy due to their higher dissipative flux of
energy for bigger gain factors [see Fig. 4(c)]. Similarly,
soliton maximum lifetime is quantified by the propagation
time step m, at which the amplitude profile deviationP

N
x;y¼0ðjamþ2

x;y − eiθamx;yj2 þ jbmþ2
x;y − eiθbmx;yj2Þ between

two subsequent time steps m and mþ 2 (after one
modulation period) exceeds 1% of the total energy ET

FIG. 3. Evolution of a broad excitation in the presence of
PT -symmetric potentials (G ¼ 1.1, φ0 ¼ 0.6π). (a) 2D image of
the initial Gaussian distribution at the input. (b) Experimental
investigation of the energy evolution as a function of time stepsm
for 0.208 (blue), 1.1 (green), 4.15 mW (red) input power.
(c)–(k) 2D image, displayed with normalized scaled colors, of
the wave packets after 14 (c), (f), (i), 27 (d), (g), (j), and 40 (e),
(h), (k) time steps m for different input powers (0.208,1.1
and 4.15 mW).

FIG. 4. Soliton simulation in conservative (G ¼ 1.0) and PT -
symmetric systems (φ0 ¼ 0.6π). (a) From the upper edge of the
band gap, PT -soliton solutions move into the gap as the total
energy E increases. (b) Width w of nonconservative solitons.
(c) Total energy threshold and (d) maximum lifetime (in time step
m) as a function of gain potential.
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[see Fig. 4(d)]. For those PT -symmetric low energy
stationary soliton solutions that are relatively broad
(w ≈ 5 unit cells), their dimensions are noticeably larger
than the step size of the lattice or its internal structure
(under PT -symmetric gain and phase modulation). As a
result, discretization effects become negligible in this
quasicontinuous limit, thus allowing these otherwise unsta-
ble solitons to live for very long propagation times given
that the gain contrast factor is small [see Fig. 4(d)]. In all
cases, as in 1D systems [25,26], we found that a 2D soliton
exhibits a small energy growth that is proportional to the
gain factor (G), despite the fact that PT symmetry of the
lattice was restored in the linear limit—a clear indication
that PT symmetry is locally broken by nonlinearity
(see the Supplemental Material [31], Note 11). Further-
more, as non-Hermitian 2D solitons propagate in this
quasiconservative system, they do not immediately dis-
integrate, but instead, their energy exponentially grows
until they collapse. Unlike a 1D system, the rate of
growth of this instability is further enhanced in a 2D
environment—especially close to the collapse point where
the PT symmetry is now violated.
By further increasing the input power, for instance

4.15 mW in this experiment, the region of instability is
reached faster and nonlinear self-focusing leads to an
immediate collapse of the field distribution, in a way
analogous to what happens in a conservative 2D discrete
Schröedinger system [27] [see Fig. 3(i)]. Unlike what
happens in its conservative counterpart (G ¼ 1.0) [28],
the non-Hermitian collapse event is followed by a fast
growth of the total energy [see red curve in Fig. 3(b)],
which leads to an even stronger local break in the PT
symmetry. This extremely localized field is concentrated
around a single lattice site and a small amount of excess
radiation is released in the form of outward propagating
waves [see Figs. 3(i) and 3(j)]. During collapse, this highly
localized wave nonlinearly self-accelerates and as a result
moves on the lattice [see Fig. 3(k)]. Numerical simulations
suggest that in most cases the directionality of this move-
ment tends to be perpendicular to the zigzag-shaped PT -
phase potentials (PN barrier), meaning that the energy of
the highly localized state is large enough to overcome this
potential barrier. Nevertheless, due to its very small width
(w ≈ 1), this moving localized solution experiences dis-
cretization effects from the lattice as well as the previously
mentioned zigzag-shaped PT -phase potentials (see the
Supplemental Material [31], Note 11). Consequently, by
overcoming the phase barrier, this moving, highly local-
ized, collapsed soliton gradually loses its energy and finally
dissolves.
In conclusion, we successfully realized a novel PT -

symmetric system in a 2D synthetic lattice. By appropri-
ately modulating the gain contrast as well as the pertinent
phase, we experimentally investigate the non-Hermitian
nonlinear localization of a broad Gaussian-like field

distribution. In contrast to what one could expect from a
Hermitian system, nonconservative PT solitons display an
effective energy growth—a process that makes them more
unstable and rapidly induces a collapse event. For higher
input power levels, a family of non-Hermitian solitons is
observed for the first time that tends to self-accelerate
and move during collapse. Of further interest will be to
study how correlated disorder influences these processes
in 2D lattices—a regime where PT symmetry is linearly
preserved.
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