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We perform a global sensitivity analysis of the binding energy and the charge radius of the nucleus 16O to
identify the most influential low-energy constants in the next-to-next-to-leading order chiral Hamiltonian
with two- and three-nucleon forces. For this purpose, we develop a subspace-projected coupled-cluster
method using eigenvector continuation [Frame D. et al., Phys. Rev. Lett. 121, 032501 (2018)]. With this
method, we compute the binding energy and charge radius of 16O at more than 106 different values of the
16 low-energy constants in one hour on a standard laptop computer. For relatively small subspace
projections, the root-mean-square error is about 1% compared to full-space coupled-cluster results. We find
that 58(1)% of the variance in energy can be apportioned to a single contact term in the 3S1 wave, whereas
the radius depends sensitively on several low-energy constants and their higher-order correlations. The
results identify the most important parameters for describing nuclear saturation and help prioritize efforts
for uncertainty reduction of theoretical predictions. The achieved acceleration opens up an array of
computational statistics analyses of the underlying description of the strong nuclear interaction in nuclei
across the Segrè chart.
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Introduction.—How do properties of atomic nuclei
depend on the underlying interaction between protons
and neutrons? Recent ab initio computations of nuclei
[1–16] have revealed that observables such as binding
energies, radii, spectra, and decay probabilities are very
sensitive to the values of the low-energy constants (LECs)
in chiral Hamiltonian models with two- and three-nucleon
forces [17–19]. Certain interaction models work better than
others, but only for selected types of observables and in
limited regions of the Segrè chart. It is not clear why. The
NNLOsat interaction [20] reproduces experimental binding
energies and charge radii for nuclei up to mass A ∼ 50

[4,5,9,16], while the 1.8=2.0 (EM) interaction [21,22]
reproduces binding energies and low-lying energy spectra
up to mass A ∼ 100 [4,7,8,10,12,15], and while the radii are
underestimated.
To improve theoretical predictions requires rigorous

uncertainty quantification and sensitivity analyses that
are grounded in the description of the underlying nuclear
Hamiltonian. Unfortunately, the number of model samples
required for statistical computing increases exponentially
with the number of uncertain LECs. A global sensitivity
analysis of the ground-state energy and charge radius 16O,
based on a realistic next-to-next-to-leading-order (NNLO)
chiral Hamiltonian with 16 LECs, requires more than 106

model evaluations. Similar numbers can be expected for a
Markov chain Monte Carlo sampling of Bayesian margin-
alization end evidence integrals [23–25]. Clearly, this is not

feasible given the computational cost of existing state-of-
the-art ab initio many-body methods applied to medium-
mass and heavy nuclei.
In this Letter, we solve this problem by utilizing

eigenvector continuation [26] to develop a subspace-pro-
jected coupled-cluster (SPCC) method as a fast and
accurate approximation to the corresponding full-space
CC method [27–33]. The SPCC method generalizes the
eigenvector-continuation formalism in Ref. [34] to non-
Hermitian problems and enables accelerated computation
of nuclear observables across the Segrè chart for any target
value α⃗⊚ of the LECs in the underlying Hamiltonian. See
Fig. 1 for a demonstration of the SPCC method applied to
16O and the variation of a single LEC (details are given
below). We will use SPCC to analyze the description of the
16O ground-state energy and charge radius across a large
domain of relevant LECs. This way we can for the first time
clearly identify the LECs that have the biggest impact on
binding energy and radius predictions, which in turn
impacts saturation properties of nuclear matter [8,35,36].
Method.—Following Ref. [34], we start by representing

the chiral Hamiltonian at NNLO Hðα⃗Þ as a linear combi-
nation with respect to all of the LECs α⃗; i.e., Hðα⃗Þ¼PNLECs¼16

i¼0 αihi, with the zeroth term given by h0¼ tkinþV0

and α0 ¼ 1. Here tkin is the intrinsic kinetic energy, and V0

denotes a constant potential contribution that does not
depend on any of the considered LECs—for example, the
one-pion exchange interaction, the leading two-pion
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exchange, and terms proportional to the pion and nucleon
masses. The analytical form of the NNLO Hamiltonian is
identical to the one of NNLOsat [20], including the
regularization scheme, which means that, for a particular
value α⃗ ¼ α⃗⋆, the Hamiltonian Hðα⃗⋆Þ will reproduce the
binding energy and radius predictions of NNLOsat. The
SPCC Hamiltonian for a target value α⃗ ¼ α⃗⊚ is constructed
by projecting Hðα⃗⊚Þ onto the subspace spanned by CC
wave functions obtained at Nsub different values for α⃗.
SPCC is a controlled approximation to the full-space CC
method, and it allows for rapid and accurate solutions to the
many-nucleon problem necessary for statistical computing.
In this Letter, we use the CC method in the singles and
doubles (CCSD) approximation.
The workhorse of the CC method is the similarity

transformed Hamiltonian H̄ðα⃗Þ ¼ e−Tðα⃗ÞHðα⃗ÞeTðα⃗Þ, where
in the CCSD approximation the cluster operator is trun-
cated at one-particle–one-hole and two-particle–two-hole
excitations, i.e., Tðα⃗Þ ¼ T1ðα⃗Þ þ T2ðα⃗Þ. For clarity, we
have indicated the implicit dependence on α⃗. The CCSD
similarity transformation is nonunitary and renders H̄ðα⃗Þ
non-Hermitian, and we thus introduce Nsub biorthogonal
left and right CC ground states,

hΨ̃j ¼ hΦ0j½1þ Λðα⃗Þ�e−Tðα⃗Þ; jΨi ¼ eTðα⃗ÞjΦ0i: ð1Þ

Here Λðα⃗Þ ¼ Λ1ðα⃗Þ þ Λ2ðα⃗Þ is a linear expansion in one-
particle–one-hole and two-particle–two-hole deexcitation
operators, and we have biorthonormality according to
hΨ̃jΨi ¼ 1. For notational simplicity, we will from here
on omit the explicit α⃗ dependence in the (de)excitation
operators and set Tðα⃗Þ ¼ T and Λðα⃗Þ ¼ Λ, respectively.
The reference state jΦ0i is built from harmonic oscillator
single-particle states, and we solve the CCSD equations in a
model space comprising 11 major oscillator shells with a
frequency ℏΩ ¼ 16 MeV. The matrix elements of the
three-nucleon interaction that enters the Hamiltonian are
truncated by the energy cut E3max ≤ 14. The CCSD result
for 16O with NNLOsat in this model space is −118.76 MeV,
which is within 1 MeVof the converged CCSD value using
a Hartree-Fock basis.
Using the Nsub different CCSD ground-state vectors in

Eq. (1), the matrix elements of the target Hamiltonian in the
subspace and the corresponding norm matrix are given by

hΨ̃0jHðα⃗⊚ÞjΨi ¼ hΦ0jð1þ Λ0Þe−T 0
Hðα⃗⊚ÞeT jΦ0i

¼ hΦ0jð1þ Λ0ÞeXH̄ðα⃗⊚ÞjΦ0i; ð2Þ

hΨ̃0jΨi ¼ hΦ0jð1þ Λ0ÞeXjΦ0i; ð3Þ

respectively. Here we also introduced eX ¼ e−T
0þT , and

H̄ðα⃗⊚Þ is the similarity transformed target Hamiltonian.
The left ground state hΨ̃0j ¼ hΦ0jð1þ Λ0Þe−T 0

is obtained
from Hðα⃗0Þ, and the right ground state eT jΦ0i is obtained
from Hðα⃗Þ. We can now solve the generalized non-
Hermitian Nsub × Nsub eigenvalue problem for the SPCC
target Hamiltonian to obtain the ground-state energy and
wave function in the subspace. With the SPCC wave
function, we can also calculate the expectation value of
any subspace-projected operator with matrix elements
hΨ̃0jOjΨi. Equations (2) and (3) can be evaluated using
Wick’s theorem, and closed form algebraic expressions are
given in the Supplemental Material [37]. Note that in
general the reference states for the Nsub different subspace
CC wave functions in Eq. (1) are nonorthogonal. This is a
nontrivial case and would require the generalized Wick’s
theorem [38,39] in order to evaluate the matrix elements of
the SPCC Hamiltonian and the norm matrix.
Results.—The SPCC predictions for the energy and

charge radius in 16O as a function of the LEC C1S0 in
the Hamiltonian are shown in Fig. 1. Using Nsub ¼ 5 exact
CCSD ground-state vectors, from a small region of C1S0
values, points 1–5 in Fig. 1, the SPCC method extrapolates
to the exact CCSD results across a large C1S0 range. With
Nsub ¼ 3 CCSD vectors, points 1–3 in Fig. 1, the radius
extrapolation deteriorates far away from the exact solu-
tions, while the energy predictions remain more accurate.
We now move to the challenging case where all 16 LECs

at NNLO can vary. In the following, we analyze two SPCC
Hamiltonians based on Nsub ¼ 64 and Nsub ¼ 128 CCSD

FIG. 1. SPCC results for 16O, using three or five subspace
vectors, for different values of the LEC C1S0 . The red diamonds
indicate exact CC calculations at the singles and doubles level
(CCSD). The NNLOsat point is indicated with a dashed
vertical line.
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ground-state vectors, referred to as SPCC(64) and
SPCC(128), respectively. The ground-state vectors are
obtained at Nsub points in a domain of LEC values that
surrounds the nominal LEC values of NNLOsat within
�20% relative variation. This domain spans a rather large
interval of ground-state energies and charge radii in 16O. The
three-nucleon contact LEC cE ≈ 0.0395 in NNLOsat is small
compared to the values of the remaining 15 LECs; we
therefore scaled cE with a factor of 20. In accordance with
observation, we also constrained the leading-order isospin-
breaking 1S0 LECs (C̃) to exhibit small isospin breaking. We
draw Nsub values for α⃗ using a space-filling Latin hypercube
design and solve for the exact CCSD wave function at each
point. We have verified that the SPCC(64) and SPCC(128)
Hamiltonians reproduce the energies and radii of the exact
CCSD calculations for all Nsub choices of α⃗.
Figure 2 shows the cross validation with respect to an

additional set of 200 randomly drawn exact CCSD calcu-
lations in the same 20% domain. From the cross validation,
we extract a root-mean-square error (RMSE) of SPCC(64):
4 MeVand 0.04 fm for the ground-state energy and charge
radius, respectively. With SPCC(128), the RMSE values
are 3 MeVand 0.02 fm. Using more subspace vectors gives
better predictions. The present results are within the
expected accuracy of CCSD. The nonhermiticity of the
CCSD equations yields SPCC Hamiltonians that do not
obey a variational bound with respect to the exact CCSD
calculations. From Fig. 2, we see that this is a minute effect.
We use SPCC(64) and global sensitivity analysis (GSA)

to analyze how the ab initio predictions for the energy and
charge radius in 16O explicitly depend on the LECs in the
NNLO nuclear interaction. GSA is a very powerful,
although computationally demanding, method for learning
how much each unknown model parameter contributes to
the uncertainty in a model prediction [40], as opposed to an
uncertainty analysis, which addresses the question of how
uncertain the prediction itself is. With SPCC, we can carry
out the large amount of model evaluations that is required
to extract statistically significant GSA results. In the
following, we treat the ground-state energy or radius of
16O as an output Y ¼ fðα⃗Þ of a model f, given here by the
SPCC(64) Hamiltonian and its eigendecomposition. In the
GSA, we decompose the total variance Var½Y� as

Var½Y� ¼
XNLECs

i¼1

Vi þ
XNLECs

i<j

Vij þ � � � ; ð4Þ

where the partial variances are given by

Vi ¼ Var½Eα⃗∼ðαiÞ½Yjαi��;
Vij ¼ Var½Eα⃗∼ðαi;αjÞ½Yjαi; αj�� − Vi − Vj; ð5Þ

where Var½Eα⃗∼ðαiÞ½Yjαi�� denotes the variance of the condi-
tional expectation of Y, and α⃗ ∼ ðαiÞ denotes the set of all

LECs excluding αi, and correspondingly for the second-
order term. The variance integrals are evaluated using
quasi–Monte Carlo (MC) sampling, and we extract a
95% confidence interval of the final result via bootstrap
with 100 resamples [41]. The first- and second-order
sensitivity indices are defined as

Si ¼
Vi

Var½Y� ; Sij ¼
Vij

Var½Y� : ð6Þ

The first-order sensitivity, Si, is often referred to as
the main effect. It apportions the total variance in the
model output to an individual model parameter αi. The
higher-order indices, e.g., Sij, apportion the variance in
the model output to the combination of parameters αi

FIG. 2. Cross validation of SPCC(64) and SPCC(128) for (top
panel) the ground-state energy and (bottom panel) charge radius
using 200 exact CCSD calculations. (Inset) Energy predictions
below −500 MeV. Only radii for negative-energy states shal-
lower than −500 MeV are included.
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and αj. The number of higher-order indices grow exponen-
tially with the number of parameters in the model.
Fortunately, it is possible to compute the sum of all
sensitivity indices for each αi, i.e., STi ¼ Si þ Sij þ
Sijk þ � � �. This is referred to as the total effect, and it
quantifies the total sensitivity of Var½Y� to parameter αi,
including all of its higher-order parameter combinations
[42]. We always have STi ≥ Si and equality for purely
additive models. In this analysis, we do not calibrate the
model to reproduce data. We study the behavior and
response of the model itself, and we assume all LECs to
be independent of each other and uniformly distributed.
In future studies, one could draw LECs from a Bayesian
posterior distribution.
Figure 3 shows the results from the GSA of the 16O

energy and radius using a SPCC(64) chiral NNLO
Hamiltonian. To limit the model response of the energy
and radius to a physically reasonable interval, we sample a
LEC domain corresponding to 10% variation around the
NNLOsat values only. The LEC cE is still scaled with a
factor of 20. The MC sample size required for carrying out
a reliable GSA depends on (i) the complexity of the
model, and (ii) the number of parameters in the model. We
have to use ð16þ 1Þ × 216 ¼ 1 114 112 quasi-MC sam-
ples to extract statistically significant main and total
effects of the energy and radius for all LECs. With
SPCC(64), this took about one hour on a standard laptop
computer, while an equivalent set of exact CCSD com-
putations would require 20 years. We find that 58(1)% of
the variance in the energy can be attributed to the leading-
order LEC C̃3S1 and that all main and total effects are

nearly identical, which signals that the energy is nearly
additive in all LECs. We would like to point out that C̃3S1 is
directly proportional to the deuteron binding energy.
However, to calibrate realistic nuclear interactions
requires additional data, partly from heavier-mass nuclei;
see, e.g., Ref. [20]. For the radius, the main effects are
distributed across several LECs, and they differ from the
total effects. Indeed, second-order correlations between
the LECs are responsible for almost 14% of the variance in
the radius. This result also reflects the challenge, and
importance, of optimizing chiral NNLO Hamiltonians to
reproduce radii of medium-mass atomic nuclei and,
consequently, saturation properties of nuclear matter.
Our analysis also reveals that the energy and radius of
16O are not sensitive to the short-range parts of the three-
nucleon interaction in this domain. Of the long-range πN
LECs, c1;3;4, only c4 exhibits a non-negligible main effect
for the energy and radius. This LEC contributes to the
tensor force in the nucleon-nucleon interaction. As
expected, only P-wave LECs with large spin weights
contribute to the 16O wave function. There also seems to
be a larger sensitivity of the radius to the isospin-breaking
terms in the interaction. Constraining the πN LECs to
within the limits of the recent Roy-Steiner analysis [43]
does not alter the sensitivity pattern or our conclusions.
The GSA results guide future uncertainty reduction efforts
for specific observables by identifying noninfluential
LECs, which is also useful for, e.g., calibration. The
SPCC method will significantly leverage statistical com-
putation for analyzing correlations between different
observables in different nuclei across the Segrè chart.

FIG. 3. (Left panel) Main and total effects (in %) for the ground-state energy (left bar) and charge radius (right bar) in 16O, grouped per
LEC. The main and total effects were computed from ð16þ 1Þ × 216 ¼ 1 114 112 quasi-MC evaluations of the SPCC(64) Hamiltonian.
The vertical lines on each bar indicate bootstrapped 95% confidence intervals. A larger sensitivity value implies that the corresponding
LEC is more critical for explaining the variance in model output. (Right panels) Histograms of (top panel) the ground-state energy and
(bottom panel) charge radius from which the total variances are decomposed.
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Summary and outlook.—We have developed the SPCC
method for evaluating nuclear observables at different
values of the LECs in chiral Hamiltonians at unprecedented
speed. With a modest number of subspace vectors,
Nsub ¼ 64, we reached 1% accuracy relative to exact
CCSD solutions in 16O. CC can also generate subspace
vectors for heavier nuclei, and according to the theoretical
underpinnings of eigenvector vector continuation, smooth
changes of the wave function should mostly live in a
low-dimensional manifold. Therefore, we expect the SPCC
method to scale well with larger A. From a GSA, we
conclude that the variance of the ground-state energy in 16O
is additive in all LECs of the NNLO chiral Hamiltonian,
and that the charge radius depends sensitively on the
combination of several LECs. The SPCC method enables
a sophisticated statistical computation [44–47] in ab initio
nuclear theory to reveal which new data would best reduce
the uncertainty in Hamiltonian models and for under-
standing how properties of atomic nuclei depend on the
underlying interaction between protons and neutrons. The
stability of 16O with respect to breakup into 4He clusters is a
relevant example [35,48–50]. The SPCC method also
enables straightforward computation of derivatives with
respect to the LECs using, e.g., algorithmic differentiation.
SPCC Hamiltonians occupy very little disk space, and they
can easily be shared within the nuclear community. SPCC
matrix elements for 16O are available from the authors
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[38] C. A. Jiménez-Hoyos, R. Rodríguez-Guzmán, and G. E.
Scuseria, n-electron Slater determinants from nonunitary
canonical transformations of fermion operators, Phys. Rev.
A 86, 052102 (2012).

[39] F. Plasser,M. Ruckenbauer, S.Mai,M.Oppel, P.Marquetand,
and L. Gonzlez, Efficient and flexible computation of many-
electronwave function overlaps, J.Chem.TheoryComput.12,
1207 (2016).

[40] I. M. Sobol, Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates, Math.
Comput. Simul. 55, 271 (2001).

[41] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto,
and S. Tarantola, Variance based sensitivity analysis of
model output. Design and estimator for the total sensitivity
index, Comput. Phys. Commun. 181, 259 (2010).

[42] T. Homma and A. Saltelli, Importance measures in global
sensitivity analysis of nonlinear models, Reliability Engi-
neering and System Safety 52, 1 (1996).

[43] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G.
Meißner, Matching Pion-Nucleon Roy-Steiner Equations to
Chiral Perturbation Theory, Phys. Rev. Lett. 115, 192301
(2015).

[44] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A.
Vehtari, and D. B. Rubin, Bayesian Data Analysis, 3rd ed.,
Chapman and Hall/CRC Texts in Statistical Science Vol. 106
(Chapman and Hall, London, 2013).

[45] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M.
Wild, and W. Nazarewicz, Uncertainty Quantification for
Nuclear Density Functional Theory and Information Con-
tent of New Measurements, Phys. Rev. Lett. 114, 122501
(2015).

[46] L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, and F.
Viens, Neutron Drip Line in the Ca Region from Bayesian
Model Averaging, Phys. Rev. Lett. 122, 062502 (2019).

[47] I. Vernon, M. Goldstein, and R. G. Bower, Galaxy for-
mation: A Bayesian uncertainty analysis, Bayesian Anal. 5,
619 (2010).

[48] B. D. Carlsson, A. Ekström, C. Forssén, D. Fahlin Strömberg,
G. R. Jansen, O. Lilja, M. Lindby, B. A. Mattsson, and K. A.
Wendt, Uncertainty Analysis and Order-by-Order Optimiza-
tion of Chiral Nuclear Interactions, Phys. Rev. X 6, 011019
(2016).

[49] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher,
and U. van Kolck, Ground-state properties of 4He and 16O
extrapolated from lattice QCD with pionless EFT, Phys.
Lett. B 772, 839 (2017).

[50] A. Bansal, S. Binder, A. Ekström, G. Hagen, G. R. Jansen,
and T. Papenbrock, Pion-less effective field theory for
atomic nuclei and lattice nuclei, Phys. Rev. C 98, 054301
(2018).

PHYSICAL REVIEW LETTERS 123, 252501 (2019)

252501-6

https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.70.061002
https://doi.org/10.1103/PhysRevC.70.061002
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1016/j.aop.2008.09.003
https://doi.org/10.1016/j.aop.2008.09.003
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1088/1361-6471/aaf5fc
https://doi.org/10.1103/PhysRevLett.121.032501
https://doi.org/10.1103/PhysRevLett.121.032501
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1016/0370-1573(78)90081-9
https://doi.org/10.1016/0370-1573(78)90081-9
https://doi.org/10.1103/PhysRevLett.84.1403
https://doi.org/10.1103/PhysRevC.69.054320
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://arXiv.org/abs/1909.08446
https://doi.org/10.1103/PhysRevC.97.024332
https://doi.org/10.1103/PhysRevC.97.024332
https://doi.org/10.1103/PhysRevLett.122.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.252501
https://doi.org/10.1103/PhysRevA.86.052102
https://doi.org/10.1103/PhysRevA.86.052102
https://doi.org/10.1021/acs.jctc.5b01148
https://doi.org/10.1021/acs.jctc.5b01148
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1016/0951-8320(96)00002-6
https://doi.org/10.1016/0951-8320(96)00002-6
https://doi.org/10.1103/PhysRevLett.115.192301
https://doi.org/10.1103/PhysRevLett.115.192301
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.122.062502
https://doi.org/10.1214/10-BA524
https://doi.org/10.1214/10-BA524
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1016/j.physletb.2017.07.048
https://doi.org/10.1103/PhysRevC.98.054301
https://doi.org/10.1103/PhysRevC.98.054301

