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We address the question of verifying the quantumness of thermal machines. A Szilárd engine is truly
quantum if its work output cannot be described by a local hidden state model, i.e., an objective local
statistical ensemble. Quantumness in this scenario is revealed by a steering-type inequality which bounds
the classically extractable work. A quantum Maxwell demon can violate that inequality by exploiting
quantum correlations between the work medium and the thermal environment. While for a classical Szilárd
engine an objective description of the medium always exists, any such description can be ruled out by a
steering task in a truly quantum case.
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Introduction.—Experimental progress has led to unprec-
edented possibilities of preparation, control, and measure-
ment of small quantum systems, where quantum and
thermal fluctuations have to be considered on equal foot-
ing. In particular, fundamental concepts of thermodynamics
have been revisited from a quantum point of view. This has
led to a quantum interpretation of thermal states [1–4], the
development of quantum fluctuation theorems [5–15] and
the concepts of quantum heat engines [16–24]. One of
the key points in these investigations is the question what
is fundamentally quantum about these extensions. For
instance, whether and how is a quantum heat engine
qualitatively and quantitatively different from its classical
counterpart? Is quantumness useful in thermodynamics?
Influences of quantum features like coherence [25,26],
discord [27], and entanglement [28,29] on the efficiency of
quantum engines have been reported, which show that the
answer can be positive under suitable conditions. However,
other investigations show that quantumness can even be a
hindrance for efficient thermal machines, which can be
regarded as classical supremacy in such situations [30–32].
In this Letter we want to address quantumness of thermal

machines from a different perspective. We consider a heat
engine truly quantum if its work output cannot be explained
by a local hidden state (LHS) model, i.e., by a local
statistical model. Even though the issue of hidden classi-
cality is fundamental to quantum information, it only rarely
appears in the context of quantum thermodynamics [33]. In
this Letter we give a verifiable criterion for the quantum-
ness of thermodynamical systems, indicating the lack of a
classical statistical description. Most remarkably, the clas-
sicality sets an upper bound on the extractable work for
certain scenarios.
Quantum Szilárd engine.—The prototypical example we

want to study is a quantum modification of the Szilárd
engine [34,35]. The classical version consists of a single
atom in a box which is in contact with a thermal bath.

In equilibrium the atom is in a Gibbs state, a statistical
mixture of different phase space points. For work extrac-
tion, the demon has knowledge about the microstate of
the system.
So far, quantum versions of this heat engine have been

investigated using different underlying systems [19,21,
36–38]. In these examples the demon performs quantum
measurements on the work medium, acquiring information
about local properties of the heat engine only. Here, we
want to exploit the fact that such a local thermal state may
arise naturally from a global entangled state of the work
medium and its environment, as supported, for instance, by
the eigenstate thermalization hypothesis [1–4,39]. In con-
trast to previous proposals, the demon obtains her infor-
mation from measurements on the environment rather
than the work medium [40,41]. A truly quantum Szilárd
engine can be revealed by deriving local work extraction
bounds which cannot be violated by any local statistical
ensemble description, that is a LHS model. These bounds
do neither rely on the knowledge about the shared system-
environment state, nor on any assumptions about the
properties of the environment (semi-device independent).
Work medium.—Let us assume that the work medium is

a finite quantum system S with Hamiltonian HS . Its Gibbs
state reads

ρGibbsS ¼
X
i

e−βEi

Z
jiihij ¼

X
i

pijiihij; ð1Þ

where β ¼ 1=kBT, Ei is the energy of the ith energy
eigenstate jii and Z ¼ P

i e
−βEi . Locally, the Gibbs state

can be seen as a statistical mixture of the energy eigen-
states but it can equally be decomposed into infinitely many
other ensemblesD¼fpk;ρkgwith

P
kpkρk¼ρGibbsS , pk≥0

and
P

k pk ¼ 1. Any such decomposition can be given
by an extension to a bipartite state ρSE of system and
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environment, with ρGibbsS ¼ TrEfρSEg, and a local POVM
fMkg on E, such that pk ¼ Trfð1 ⊗ MkÞρSEg and
ρk ¼ TrEfð1 ⊗ MkÞρSEg.
To investigate the difference of a classical and a quantum

Szilárd engine we introduce Alice and Bob. Alice is a
demon who can prepare many copies of the global state
ρSE . While she can perform measurements on E, she does
not act directly on S since this would in general disturb the
local thermodynamical situation [42]. Bob has access only
to the system S and would like to extract work from its
Gibbs state. As shown in Ref. [40] any nonproduct joint
state ρSE ≠ ρS ⊗ ρE allows Bob to extract work from S if
Alice performs suitable measurements on E and communi-
cates classically with him.
Work extraction scenarios.—Bob wants to extract work

from a certain decomposition D ¼ fpk; ρkg of his local
Gibbs state. We can describe this work extraction as a
transfer of energy due to a suitable coupling between the
work medium S and a work storage system W with
Hamiltonians HS and HW , respectively [5,7,43,44]. The
total Hamiltonian is given by H ¼ HS ⊗ 1þ 1 ⊗ HW.
Following the reasoning of Ref. [7] the coupling of S and
W has to be a unitary transformation that conserves the
total energy independently of the initial state of the work
storage ρW . Further constraints ensuring that only work and
no heat is transferred are presented in the Supplemental
Material [45]. For each state ρk inD Bob can find a suitable
unitary Uk which transfers a non-negative amount of energy
from S to W. The average work extraction associated with
this process is given by

ΔWk ¼ Trf1 ⊗ HWðUkρk ⊗ ρWU†
k − ρk ⊗ ρWÞg; ð2Þ

where ρW is the initial state of the work storage. Because
of energy conservation, the change of the inner energy in
S is ΔEk ¼ −ΔWk and ΔWk ≤ TrfHSρkg. The average
work Bob can extract from D by using the set of unitaries
U ¼ fUkg is then given by W̄ ¼ P

k pkΔWk.
Special cases are pure state decompositions Dpur ¼

fpk; jϕkihϕkjg. If Bob knows the pure state jϕki of his
system, the largest possible amount of work can only be
extracted if he performs a suitable local unitary operation
US
k on S which acts as US

k jϕki ¼ j0i, where j0i is the
ground state of the local Hamiltonian HS whose energy
we set to E0 ¼ 0 [52]. As shown in Ref. [7], such a local
unitary US

k can indeed always be implemented by an energy
conserving global coupling Uk between S and W, but
requires the work storage to be initialized in a pure state ρW
which is a coherent superposition of energy eigenstates
states of HW . Thus, energy measurements on W will in
general yield probabilistic outcomes [53]. However, Bob is
only interested in the average work output under the given
Uk, which is, due to the energy conservation, given by the
negative energy change in S, that is ΔWk ¼ −ΔEk ¼
hϕkjHSjϕki − h0jHSj0i ¼ hϕkjHSjϕki. Accordingly, if

Alice can provide the pure state decomposition Dpur,
Bob can extract on average W̄pur ¼ P

k pkhϕkjHSjϕki ¼
hHSiρGibbsS

which is, not surprisingly, the inner energy of the

work medium. Thus, equivalently to the classical case, full
knowledge about the state of the system allows for maximal
work extraction. If Alice cannot announce correct pure
states to Bob, the output will be W̄ < W̄pur. In fundamental
contrast to the classical Szilárd scenario, a Gibbs state
of a quantum system allows for infinitely many different
ensembles of pure states.
Truly quantum features can be revealed when Bob wants

to extract work from different decompositions Dn. For
each decomposition he has a suitable set of unitaries
Un ¼ fUn

kn
g as described above. He chooses randomly

with probabilities cn one of the sets and asks Alice which
unitary out of the particular set Un he should perform to
extract the maximal amount of work. Depending on how
well Alice can produce the desired decompositions, Bob
will extract on average W̄ ≤

P
n cnW̄n.

The question now arises, under which conditions Bob
can be sure that his Szilárd engine is truly quantum. He has
no access to the global state ρSE and, therefore, cannot
check whether the state is quantum correlated. The only
information he gets from Alice is which unitary Un

kn
he

should use if he asks her for the decomposition Dn.
Accordingly, Bob has to certify quantumness without
any assumptions about the properties (for example, the
Hilbert space) of the environment E. Such a semi-device-
independent verification task is called quantum steering
[54,55]. Successful steering has important implications on
the objectivity [56] of the local state in the system. In a
classical scenario the system state is always objective,
though unknown to Bob as long as the demon does not
share her knowledge with him. In the quantum case, in
general, it makes no sense to assign objective system states
at all, as long as no observation of the environment is made.
Particularly, a thermalized quantum system is not in one of
its energy eigenstates and does not fluctuate between them
while time is evolving, if these fluctuations are not given
relative to measured states of the bath [57]. For a closer
look on how steering can rule out objective quantum
dynamics see Refs. [56,58,59]. In our Szilárd scenario
we can use these ideas as follows: If a local objective
statistical description of Bob’s system S holds, it can be
represented by a local hidden state (LHS) model F ¼
fpξ; ρξg [55]. The hidden states ρξ are distributed randomly
according to their probabilities pξ. Locally, the Gibbs state
in Bob’s system has to be recovered:

ρGibbsS ¼
X
ξ

pξρξ: ð3Þ

Thus, among all the copies of his local state, a fraction pξ

will be in state ρξ. Bob does not know which state he has for
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a particular copy but he can assume that, if the LHS model
holds, the best knowledge Alice can possibly have about
his system is the particular hidden state for each of his
copies. Therefore, any decomposition Alice can provide
has to be either the LHS ensemble F itself or a coarse
graining of the latter [55]. However, this does not mean that
the real state ρSE shared by Alice and Bob has to be
separable. It only means that Bob could explain his
statistics also by a state without quantum correlations.
A truly quantum Szilárd engine can therefore be defined
by the condition W̄ > W̄cl, that is, Bob’s average work
output is larger than what could be obtained from a state
which can be described by a LHS ensemble F . Clearly, the
work output of a single decomposition D can always be
explained by a classically correlated state because we can
always identify D ¼ F. Bob needs at least two different
sets of unitaries Un.
We should note that the observables on Bob’s side

needed to perform a steering task are represented by the
work extraction. In order to determine the average energy
transferred to the work storage he has to measure W in its
energy basis. According to Naimark’s dilation theorem, this
measurement, together with a unitary Uk, defines a POVM
on S. The set of POVMs that can be implemented by the
described work extraction scenario is strictly smaller than
the set of all local POVMs on S. For example, the only
implementable projective measurement is the one diagonal
in the energy eigenbasis of HS. It is an open question
whether the work extraction POVMs can demonstrate
steering for any steerable state ρSE that respects the local
Gibbs state.
Whether the work output on Bob’s side can also be

provided by a classical demon is in general not trivial to
answer. As in a standard steering scenario a suitable
inequality has to be derived, which depends on the proper-
ties of the work medium S and the work extracting unitaries
fUn

kg. It is crucial for quantum steering that the inequality
does not depend on the part E which is inaccessible for Bob.
Qubit work medium.—To illustrate the concept we

consider a qubit work medium S with local Hamiltonian
HS ¼ j1ih1j. Its thermalized Gibbs state is given by

ρGibbsS ¼ 1þ η

2
j1ih1j þ 1 − η

2
j0ih0j; ð4Þ

with η ¼ ðe−β − 1Þ=ðe−β þ 1Þ and β ¼ 1=kBT. As stated
above, Bob needs at least two different sets of work
extracting unitaries to verify a quantum Szilárd engine.
Let us assume that he would like to extract work from
two dichotomic pure state decompositions D1 and D2. The
first one is a decomposition into energy eigenstates
fj0i; j1ig, the second one is given by the two Bloch
vectors r⃗� ¼ ð�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
; 0; ηÞ. The local unitaries for

D1 are U1
z ¼ σx for the state j1i and U0

z ¼ 1 for the state
j0i. For D2 the suitable unitaries U�

x are rotations around

the y axis about an angle α ¼ � arctanðη=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ (see

Fig. 1). Accordingly, Bob needs two different kinds of
work extraction devices. We represent them by red and blue
cells which both have two buttons to trigger the different
work extraction unitaries and measure the work storage W
in the energy basis (Fig. 1). In each cell Bob can place
one qubit. The red cells can perform U1

z and U0
z , the blue

cells apply either Uþ
x or U−

x . In the Supplemental Material
[45] we construct an explicit model, how the energy
conserving unitaries can be realized by using only two
qubit interactions.
Let us first assume that Alice prepares the global state

ρD1

SE ¼ 1
2
ð1þ ηÞj1ih1j ⊗ j1ih1j þ 1

2
ð1 − ηÞj0ih0j ⊗ j0ih0j,

compatible with the local Gibbs state. Bob places his qubit
into a red cell and asks Alice which button he should press.
Alice measures E in the σz basis and tells Bob to press the
button 1 if the outcome is 1 and button 0 if the outcome is 0.
The cell will apply either U1

z or U0
z. On average—Bob has

many red cells which he wants to charge—he will extract
W̄z ¼ 1

2
ð1þ ηÞ because Alice tells him to press button 1

with probability p1
z ¼ 1

2
ð1þ ηÞ.

If Bob wants to charge his blue cells, Alice could help
him by preparing the state ρD2

SE ¼ρþ⊗ j1ih1jþρ−⊗ j0ih0j,
where ρ� are the density matrices corresponding to the
Bloch vectors r⃗�. Locally, the Gibbs state is again
recovered. Depending on her outcome, Alice tells Bob
to press either the button which applies Uþ

x or U−
x

(see Fig. 1). On average Bob can again extract W̄x ¼ 1
2

ð1þ ηÞ ¼ W̄z. Thus, the decomposition D1 into energy
eigenstates is by no means better for the work extraction
than decompositionD2. Both ρ

D1

SE and ρ
D2

SE are separable and
describe situations where Alice exploits only classical

FIG. 1. Work extraction. Bob has blue and red work extraction
cells with locally thermal qubits. The reduced state ρS can be
decomposed into statistical mixture of j1i and j0i or the two
states given by the Bloch vectors r⃗�. Different unitaries can be
used to bring the states to the ground state extracting some work.
The red cells can apply the U1

z and the identity operation. Qubits
in the blue cells can be manipulated by two unitaries U�

x . Bob
gets the information which unitary he should use from Alice.
After the coupling process the work storage is measured in its
energy basis.

PHYSICAL REVIEW LETTERS 123, 250606 (2019)

250606-3



correlations. We call such a demon a classical one because
the same result can be obtained from a local statistical
model for ρS without any reference to a global quantum
state ρSE .
When is the demon really quantum?.—In the remainder

we will consider the case where Bob would like to charge
both the red and the blue cells. He has N blue cells, M red
cells, and N þM thermal qubits. The ratio between red and
blue cells is given by c ¼ N=M. First, he distributes the
qubits over the cells, which fixes the decomposition he
needs to extract maximal work with any given cell.
Subsequently, he announces the color of each single cell
to Alice and asks her which button he should press. In the
end, he can read off the extracted work from each work
meter and average over them to see how efficient the
procedure has been. If Alice’s knowledge for each single
qubit is described by ρD1

SE or ρD2

SE, his average work output
in the limit N → ∞ can never reach the optimal W̄opt ¼ 1

2

ð1þ ηÞ (we assume that c > 0 is kept constant). The blue
and the red cells are not compatible with the same statistical
mixture of states. On the other hand, the entangled state of
the form

jΨiSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r
j1iS ⊗ j1iE þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

2

r
j0iS ⊗ j0iE ð5Þ

would do the job. Alice could measure either σz or σx
depending on the color of the cell for which Bob would like
to know which button he should press. If Alice is indeed a
demon who can prepare Bob’s thermal state to be the partial
trace of a pure entangled state, he can extract the optimal
average W̄opt.
We will now calculate which average work Bob can

maximally obtain if a LHS model holds. The best Alice can
do if she knows the state ρξ for each cell is to tell Bob which
button he should press in order to obtain the maximal work
output. Accordingly, for the red cells Alice would tell
him to press the button triggering U1

z whenever zξ ¼
Trfσzρξg > 0 for the state in this cell. The average work
output for the red cells will then be W̄z ¼ 1

2

P
ξ pξðjzξj þ ηÞ

[45]. For the blue cells Alice announces the button for Uþ
x

if xξ ¼ Trfσxρξg > 0 and the button for U−
x if xξ ≤ 0. On

average, the blue cells will then reach W̄x ¼ 1
2
ðηþ η2 þP

ξ pξjxξj
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ [45]. The work average over all cells

that can be expected for a LHS model is, thus, given by
W̄cl ¼ ðW̄z þ cW̄xÞ=ð1þ cÞ. For the choice c ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
we can bound the average work for any

LHS model by [45]

W̄cl ≤
η
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p

þ ηþ 1
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2η2

p
2
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p

þ 1
� : ð6Þ

If Bob extracts an average work beyond the classical limit
W̄cl he can be satisfied that Alice is indeed a quantum
demon who exploits nonclassical correlations. Any local
statistical model has to be discarded in this case.
If Alice can, for example, indeed prepare the entangled

state (5), the work value that can be reached is W̄qu ¼
W̄opt ¼ 1þη

2
. Thus, Alice can violate the inequality for

η > −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ffiffiffi

2
p

− 1Þ
q

≈ −0.91, that is, for temperatures

kBT > 0.33. For the case of infinite temperature (η → 0)
the steering inequality simplifies to W̄cl ≤ 1=ð2 ffiffiffi

2
p Þ, while

W̄opt ¼ 1
2
.

For an intermediate regime we can consider the follow-
ing mixture,

ρSE ¼ qρqu þ ð1 − qÞρcl; ð7Þ

where ρqu ¼ jΨihΨjSE as in Eq. (5) and ρcl is the classically
correlated state ρcl ¼ 1

2
ð1þ ηÞj1ih1jS ⊗ j1ih1jE þ 1

2

ð1 − ηÞj0ih0jS ⊗ j0ih0jE . The parameter q tunes between
the fully quantum case (q ¼ 1) and the scenario that
represents a classical Szilárd demon (q ¼ 0). The extract-
able work in the blue cells is now W̄x ¼ 1

2
ðqþ ηþ η2 −

qη2Þ [45]. Figure 2 shows the relation between the non-
classicality of the demon and the two parameters η and q.
For parameters above the red line Alice can demonstrate
that she is a quantum Szilárd demon.
We should note that the steering inequality (6) is not

ideal for the detection of nonclassical correlations in the
state jΨiSE . It is well known that any pure entangled state is
steerable [54]; thus, jΨiSE is steerable for any −1 < η < 1.
More generally, any nonzero temperature Gibbs state is
mixed and therefore has an entangled and steerable
purification. However, we have restricted Bob’s observ-
ables to a special class of operations, namely, the work
extraction. It is therefore not surprising that the given
inequality cannot detect every steerable state. We could

FIG. 2. The plot shows by how much Alice can violate the
classical work bound. For parameters in the region below the
red line Bob can explain the extracted work with a local hidden
state model.
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improve the bound by adding additional work extraction
options on Bob’s side, but this does not add anything
conceptually new to the framework. Furthermore, moti-
vated by the concept of a Szilárd engine, the inequality is
based on the assumption that Bob’s reduced state is indeed
a Gibbs state. This property can of course be locally
verified by Bob. It has to be emphasized that the con-
struction of the steering inequality only depends on the
device-dependent part of the steering task, such as the
Hilbert space of Bob’s system S and the work extracting
operations he uses. There are no assumptions made about
the structure of the environment or the operations Alice
performs.
Conclusions.—In this Letter we have shown how the

concept of quantum steering can be applied to quantum
thermodynamics in order to verify quantumness. The
violation of a steering inequality is connected to the
macroscopic average work. The use of a quantum steering
task for the verification of quantumness is motivated by the
asymmetric setting in quantum heat engines. The work
system under control is taken to be the device-dependent
part in the scenario, whereas the environment is treated
device independently.
Our concept is of particular interest for the investigation

of bath-induced fluctuations in quantum thermodynamics.
A violation of the steering inequality rules out any possible
objective (though statistical) description of fluctuations in
the system. Notably, the assumption that a system fluc-
tuates between its energy eigenstates is not valid if genuine
quantum correlations are taken into account. Statements
about the fluctuations in the system can only be made with
respect to the observed fluctuations of the environment
which will depend on how the environment is measured.
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