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The resource theory of thermal operations, an established model for small-scale thermodynamics,
provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any
dimension with any translation-invariant local Hamiltonian, we identify a large set of translation-invariant
states that can be reversibly converted to and from the thermal state with thermal operations and a small
amount of coherence. These are the spatially ergodic states, i.e., states that have sharp statistics for any
translation-invariant observable, and mixtures of such states with the same thermodynamic potential. As an
intermediate result, we show for a general state that if the gap between the min- and the max-relative
entropies to the thermal state is small, then the state can be approximately reversibly converted to and from
the thermal state with thermal operations and a small source of coherence. Our proof provides a quantum
version of the Shannon-McMillan-Breiman theorem for the relative entropy and a quantum Stein’s lemma
for ergodic states and local Gibbs states. Our results provide a strong link between the abstract resource
theory of thermodynamics and more realistic physical systems as we achieve a robust and operational
characterization of the emergence of a thermodynamic potential in translation-invariant lattice systems.
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Introduction.—The quantum information approach to
thermodynamics has allowed thermodynamic concepts,
such as work, to be successfully extended into regimes of
small-scale systems that store and process quantum infor-
mation [1]. Notably, formulating thermodynamics as a
resource theory [2—5] allows for a precise characterization
of the resources required in single-instance state trans-
formations, for instance thermodynamic work [6—8] and
quantum coherence [9-12]. This is done by establishing a
set of natural rules such as energy conservation, character-
izing which possible evolutions a quantum state can
undergo under these rules, and studying which external
resources allows the system to undergo otherwise forbid-
den state transformations. A simple such framework is the
resource theory of thermal operations, where one allows
any energy-conserving unitary interaction with a heat bath
at a fixed background temperature [4,8,13], and can be
extended to more general types of reservoirs [14—17]. This
approach has strong connections with information-
theoretic entropy measures and quantum Shannon theory
[18,19]. More generally, information-theoretic approaches
have provided new descriptions of nonequilibrium states
and dynamics in statistical mechanics and thermodynamics,
both in the classical and quantum regimes [20-24].
The resource theory connects to standard macroscopic
thermodynamics in several ways. This approach is
equivalent [25-27] to an established abstract and axiomatic
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formulation of thermodynamics by Lieb and Yngvason
[28-31]. Second, one recovers the usual laws of thermo-
dynamics in regimes of many identically and independently
distributed (i.i.d.) copies of a state, such as for an ideal
gas, or if the states considered are quantum statistical
ensembles [4,8,32-34].

The resource theory of thermodynamics extends equi-
librium thermodynamics to nonequilibrium situations. In
standard macroscopic thermodynamics, a system is defined
to be in thermodynamic equilibrium if it no longer presents
macroscopic changes or currents, and if it has lost memory
of its initial, possibly nonequilibrium state [35]. The
purpose of this definition is to ensure that the thermody-
namic behavior of the system is entirely specified by a
thermodynamic potential: the optimal work required to
transform one equilibrium state into another by a reversible
thermodynamic process is given by the difference of the
potentials for the initial and final states, and does not
depend on any further details of the process. In the resource
theory, this can be verified directly: is the amount of work
required to transform a state A into a state B equal to the
amount of work that can be extracted in the reverse
process? If so, the resource theory is said to be reversible.
Crucially, reversibility of a resource theory—i.e., the
emergence of a thermodynamic potential—can happen
for states that are not necessarily in thermodynamic
equilibrium, as we show in this Letter.
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A natural question is whether the notion of resource-
theoretic reversibility can be leveraged to show the emer-
gence of a thermodynamic potential for new classes of
states that are physically relevant (cf. also [36—41]), such as
interacting particles on a lattice, which go beyond idealized
macroscopic settings such as i.i.d. states.

Here, we show that on a translation-invariant lattice of
any spatial dimension with a local Hamiltonian, all ergodic
states—i.e., states for which macroscopic quantities have
sharply peaked statistics—can be reversibly converted to
and from the thermal state. Furthermore, mixtures of
ergodic states with the same thermodynamic potential also
have this property. This ensures the emergence of a
thermodynamic potential for this class of states even if
some of these states are far out of equilibrium.

In the following, we first introduce the resource theory
of thermodynamics and show that, for general states, an
equipartition property implies the emergence of a thermo-
dynamic potential. We then consider translation-invariant
lattices and explain our main result illustrated with an
example of a 1D Ising spin chain, before concluding with a
discussion.

Resource theory of thermal operations.—In this resource
theory, one is allowed (i) to bring in any ancilla systems in
their thermal state, (ii) to carry out any energy-conserving
unitaries, and (iii) to trace out any systems. We may then
quantify the amount of work required to transform p into
another state p’ by including an explicit battery system,
initialized in a pure energy eigenstate |[E) and which we
require to transition into another energy eigenstate |E’) at
the end of the process. That is, if the transformation p ®
|EY(E| = p' ® |E')(E'| is possible with the operations
(i)—(@ii), then we define this process as consuming
E — E' work [8,34,42] (negative work consumption corre-
sponds to work extraction).

We refer to the class of states that are block diagonal in
the energy eigenspaces as semiclassical states. For these
states, transformations under thermal operations are fully
characterized by thermomajorization [8], a generalized
notion of matrix majorization [43-45]. Let us consider
two natural tasks associated with a semiclassical state p:
state formation and work distillation [Fig. 1(a)]. State
formation consists in preparing the state p starting from
the thermal state of the system, y = e™?# /tr(e##). The
optimal amount of work that needs to be invested, if we
allow an inaccuracy € > 0 in the final state and if p is
semiclassical, is [7,8]

Wformation(p) = ﬂ_Ianax(p||7), (1)

with the max-relative entropy defined as S5, (p|lo) =
min; ., , In |lc~"/2po=1/2||,, with the optimization ranging
over all states p that are € close to p in trace distance [46].
On the other hand, work distillation consists in extracting as

much work as possible from a given state p, resulting in the
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FIG. 1. A thermodynamic potential emerges when the under-
lying resource theory is reversible. (a) For a state p that is block-
diagonal in energy, the work that can be extracted is given by the
min-relative entropy W = 715 (p|ly). leaving the system
in the thermal state y = e /tr(e”H). Conversely, the work
required to prepare p from the thermal state is Wy, =
B8« (Blly). (b) Suppose a state p (respectively p’) can be
reversibly converted to and from the thermal state with work
F(p) — F(y) [respectively, F(p') — F(y)]. Then p and p’ can be
reversely interconverted. In this case the resource theory is said to
be reversible, and the thermodynamic potential F(p) fully
characterizes the work required for state transformations.
(c) As an intermediate result, we show that if the min- and the
max-relative entropies of any arbitrary quantum state p coincide
approximately, then coherences in the state are suppressed,
making it nearly block diagonal in energy. The state is then
approximately reversibly convertible to and from the thermal
state with thermal operations and a small source of coherence.

thermal state y on the system. The optimal amount of work
that can be extracted from a semiclassical state p is [7,8]

Waisitiable (P) = B Sein(Pll7), (2)
with the min-relative entropy defined as S¢. (pllo) =
max; ., ,{—In tr(I”s)}, where Il is the projector onto
the support of p [46]. The min- and max-relative entropies
are special cases of the Rényi relative entropies [47—49].

There are no known necessary and sufficient conditions
for transformations of arbitrary states under thermal oper-
ations. The reason is that thermal operations cannot
generate any coherent superposition of energy levels,
underscoring the role of time asymmetry in thermodynam-
ics [9-12,50-54]. It is thus necessary to account for
coherence as a separate resource that enable operations
that cannot be performed with thermal operations alone
[55-61].

We resort to a very rudimentary way of accounting for
coherence. We allow a system C with a bounded range of
energy, which can be prepared in any pure state of our
choosing and which we must dispose of in any state that is
close to a pure state. This energy range is what we refer to
as amount of coherence when such a system is used in a
thermodynamic process. This crude approach is sufficient
for our purposes, since our protocols only require such
a system with an energy range that is negligibly small
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compared to the overall work cost of the transformation,
thus forbidding any noticeable embezzling of work [13].

Emergence of a thermodynamic potential.—A resource
theory is reversible for a class of states if the optimal work
cost of any transition between two states in the class is
equal to the optimal work extracted in the corresponding
reverse process. This class of states then has a total order,
and we can assign a “thermodynamic value” to each state—
this is the thermodynamic potential. A sufficient condition
for reversibility is to check whether the work required for
state formation can fully be recovered in the reverse task of
work distillation [8]; any transformation between two such
states is then reversible [Fig. 1(b)]. In well-behaved cases,
such as in the i.i.d. regime [4] or for statistical ensembles
[27], the thermodynamic potential is given by the Kullback-
Leibler divergence or Umegaki relative entropy S(p||y),
defined as

S(pllo) = trlp(inp — In)]. 3)

Equipartition implies  reversibility ~with  thermal
operations.—We first present an intermediate result: if
the min- and max-relative entropies coincide approxi-
mately, a condition which can be interpreted as a form
of equipartition, then the state can approximately be
reversibly converted to and from the thermal state
[Fig. 1(c)]. Our physical explanations are complemented
by a fully rigorous proof that will be published elsewhere
[62]. We refer to the Supplemental Material for a precise
technical formulation of our main results [63].

Theorem I: For any p and for € > 0, suppose that

Semllly) =S =2, Sau(plly) S+ A,

for some S € R, A > 0. Then p can be approximately
converted to and from the thermal state at a work cost
(respectively, work yield) of approximately =[S + O(A)]
[respectively, f~'[S — O(A)]], with an amount of coher-
ence of approximately O(A), and with arbitrarily good
precision as € — 0.

Forasystem of n particles, if wehave A/n — Qasn — oo,
then the extractable work per system and the work
of formation per system both converge to sy (p):=
lim,_,,S/n, and the amount of coherence used per copy
goes to zero. In this case s, (p) becomes the thermodynamic
potential in the thermodynamic limit n — oo.

To prove Theorem I, we first show that a state p for
which the min entropy and the max entropy differ by at
most O(A) have off-diagonal elements (E,|p|Ey) that are
exponentially suppressed in f|E, — Ey| if B|E, — Ey| 2
O(A). In this sense, such a state may not harbor a large
amount of coherence. Theorem I is then proven by
exhibiting protocols for work distillation and state forma-
tion with the claimed properties. For both protocols, we
first replace the Hamiltonian by one where the energy levels
are integer multiples of some elementary spacing O(A),

Pn hz m
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FIG. 2. Ergodic state on a lattice. An ergodic state is one that is
translation-invariant and that produces sharp statistics for any
translation-invariant observable. Our main result is to show that
any two ergodic states can be reversibly interconverted with
thermal operations and a sublinear amount of coherence, with the
reversible work cost deriving from a thermodynamic potential
given by the Kullback-Leibler divergence. Furthermore, a trans-
lation-invariant state has a thermodynamic potential if and only if
it is a mixture of ergodic states of equal potential, providing a
robust and operational understanding of the emergence of a
thermodynamic potential in lattice systems.

which can be done by investing an amount of coherence of
order O(A). The work distillation protocol is then executed
as follows. One dephases p in the new energy basis. Then
we apply the known protocol for work extraction of
semiclassical states. Because p has little coherence, the
work that was wasted by the dephasing is small and the
min-entropy does not change by much, so we can still
recover S — O(A) work. For the second protocol, we use
the notion of an internal reference frame: the state p is
equivalently described by a completely incoherent state
p = Dlp ® n|, where 7 is a special state called a reference
frame, and where D[] is the joint dephasing operation on
the system and the reference frame [64,65]. Because p has
only little coherence, a small reference frame 7 suffices to
achieve an accurate description of p. Our protocol consists
in first preparing the incoherent state p using the known
protocol for semiclassical states, and then “shifting” the
coherence from 7 to p, a process known as “externalizing”
the reference frame [65].

Ergodic states on a lattice.—We now consider a d-
dimensional square lattice with a local Hamiltonian that is
translation-invariant:

H=> h, (4)

ze7

where each term 4, is a lattice-translated version of a term
hy that acts on a constant number of sites neighboring the
origin. Each site is a quantum system of some finite
dimension. Our calculations will be performed for finite
lattice sizes, where the total number of sites is denoted by 7.
For finite n, the Hamiltonian is truncated at the boundary
by ignoring any terms that have support outside of the finite
region considered.

In statistical mechanics, thermodynamic behavior is
often captured in the notion of ergodicity (Fig. 2).
Ergodic states are defined on the infinite lattice in two
equivalent ways [66-70]. First, they are exactly those
states that self-average over space translations. lL.e., an
ergodic state p satisfies the following property: for any
local observable ay, we have Var,[(1/n)} a,] — 0 as
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n — oo. Equivalently, ergodic states are the extremal points
of the set of states that are translation-invariant on the
infinite lattice. Consequently, any translation-invariant state
can be written as a mixture of ergodic states.

Ergodic states are the natural quantum analog of clas-
sically ergodic probability distributions [71,72] for spatial
translations instead of time evolution. Examples of ergodic
states include Gibbs states of a local Hamiltonian at a
sufficiently high temperature, where the correlation func-
tions of local observables decay exponentially in space (see
for example Ref. [73] and references therein). Also, any
ii.d. state is ergodic, being the Gibbs state of a non-
interacting Hamiltonian. In contrast, a mixed state of
macroscopically different sectors (e.g., different magneti-
zation sectors in a symmetry-broken phase) is not ergodic,
as spatial fluctuations do not vanish.

Ergodicity and reversibility under thermal operations.—
Our main contribution is to prove that on a lattice of any
dimension with a translation-invariant local Hamiltonian,
all ergodic states fall into the setting of Theorem I and are
thus reversibly interconvertible:

Theorem II: In the thermodynamic limit n — oo, any
two ergodic states can be reversibly converted into one
another using thermal operations and a sublinear amount of
coherence, and the corresponding reversible work cost rate
is given by the thermodynamic potential

o1
S(p) = nh_)n;loﬁs(pn”yn)f (5)

where p,, is the reduced state of p on a finite sublattice of
size n and y,, = e P /tr(e7P!") is the Gibbs state with the
truncated Hamiltonian H,, on the sublattice.

Theorem II is a quantum version of the Shannon-
McMillan-Breiman theorem for the relative entropy [71].
The proof of Theorem II proceeds via the hypothesis testing
relative entropy [74-79], which interpolates between the
min- and max-relative entropies [79] and can be formulated
as a semidefinite program [80]. Inspired by the proof
techniques of [69,70,81-84], we construct a quantum
relative typical projector for an ergodic state relative to a
Gibbs state associated with a truncated local Hamiltonian.
This allows us to prove a generalized version of Stein’s
lemma for hypothesis testing [69,81,85-87] from which it
follows that the min- and max-relative entropies must
coincide up to sublinear terms in n, and where the limiting
value converges to s(p). We are then in the setting of
Theorem I: any ergodic state can be reversibly converted to
and from the thermal state with the reversible work deriving
from the thermodynamic potential s(p). We refer to the
Supplemental Material [63] for a precise statement of the
theorem and how it connects with Theorem I; rigorous
proofs will be published elsewhere [62].

Translation-invariant states and reversibility.—We can
further ask, is there a larger class of translation-invariant

states on a lattice that can be reversibly converted to and
from the thermal state? We provide an answer to this
question as follows:

Theorem III: A translation-invariant state p that is a
mixture of a finite number of ergodic states is reversibly
convertible to and from the thermal state if and only if all
ergodic states in the mixture are of equal potential, i.e.,
p =3 pip®) with s(pV)) = s(p?) = - .

According to the definition of ergodic states, any trans-
lation-invariant state is a possibly infinite mixture of
ergodic states. For states that are finite mixtures, such as
finitely correlated states [88], Theorem III provides a
complete characterization of when a thermodynamic poten-
tial emerges.

To prove the above theorem, we note the following
property of the min- and max-relative entropy for a mixture

p =3 pip'h:

€ . ¢ k
Stin(pullra) = minSey, (01 l72). (6a)
Stvax (Pull7a) = maxSia, (o1 7). (6b)

with the approximation holding up to terms that do not
scale with n and up to an adjustment of the smoothing
parameter e that does not depend on n. If all the p®*)
in the decomposition have the same potential,
S(p<1)) = s(p(2>) =, then Sxenm(anyn) ~ Semax(anyn)
with equality in the thermodynamic limit, and we can
apply Theorem 1. Conversely, if the p(¥) do not all have the
same potential, then the min- and max-relative entropies
differ even in the thermodynamic limit. This implies that p
cannot be reversibly convertible to and from the thermal
state, because the min- and max-relative entropies are
monotones under thermal operations.

Example: 1D lIsing spin chain.—This toy example
illustrates how a thermodynamic potential can emerge
for states that are not in thermodynamic equilibrium.
Consider a 1D chain of spin-1/2 particles with an Ising
nearest-neighbor (NN) coupling and an external field h:

H=-JY olol+hYy o, (7)

i, NN i

where o, = [1)(1] — |{)(}|. Since i.i.d. states are ergodic,
our results imply that two pure states of the form |y)®",
ly/)®" can be converted into one another with thermal
operations and an asymptotically negligible source
of coherence at a reversible work cost of F,, — F, per
copy, where the thermodynamic potential is F, =
p~Him,_ o, S(w®"||y,)/n, which is the free energy per site
up to an unimportant additive constant. The thermody-
namic potential is well defined on an operational level even
for states w®" that are not in macroscopic equilibrium.
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Consider for instance the state |y) = |[+) = [|1) +|{)]/ V2.
For h > J, the state y®" presents macroscopic changes in
the total spin along the x axis under time evolution
according to H, but this does not prevent it from being
reversibly convertible to and from another state [y’)®".

Discussion.—Our results provide a direct link between
the abstract theory of thermodynamics at the small scale
formulated in terms of a resource theory, and realistic
many-body systems that are commonly studied in statistical
mechanics. In statistical mechanics, an ergodic state physi-
cally corresponds to a definite macroscopic state; it
describes a pure thermodynamic phase without phase
coexistence [66]. We endow these ergodic states with a
stronger notion of thermodynamic behavior: the notion of
reversibility associated with the resource theory—which
extends the concept in equilibrium thermodynamics to
nonequilibrium situations—is tightly related to the notion
of ergodicity. Furthermore, our analysis underscores how
reversibility in the resource theory does not imply equi-
librium. Indeed, spatially ergodic states, as considered here,
can evolve nontrivially in time as illustrated in the toy
example above.

Our rigorous proof [62] makes use of advanced infor-
mation-theoretic techniques, including the information
spectrum [89-95], hypothesis testing and quantum
Stein’s lemma [78,79,85,86], as well as quantum typical
projectors [69,70,81,96]. Our results are an extension of the
ergodic theorems of Refs. [69,70]. We also use Ref. [97]
to show that if we consider the reduced state of the
infinite-dimensional Gibbs state instead of truncating the
Hamiltonian for finite sublattices, then our results persist
for sufficiently high temperatures where there is a unique
KMS state.

Curiously, it is possible to construct toy situations in
which the thermodynamic potential is not given by the
Kullback-Leibler divergence [62]. While this does not
happen in the setting considered in the present Letter, it
shows that the Kullback-Leibler divergence is not univer-
sally the correct expression of the emergent thermodynamic
potential as defined via Theorem I when the min- and max-
relative entropies converge to the same value. Whether this
observation is relevant in physically interesting systems is
an open question.

It seems plausible that our results could be robust to slight
violations of translation invariance. For example, slight
spatial inhomogeneity in a hydrodynamic mode could be
allowed. Also, the results of [60,61] would provide a more
accurate analysis of the coherence requirements of the state
transformations in Theorem I. Furthermore, ergodic states
exhibit some similarities with states obeying the eigenstate
thermalization hypothesis [98-100], such as exponential
decay of off-diagonal entries of the density matrix [62],
suggesting that it might be possible to extend our techniques
to such settings. We also note that a characterization of
infinite or continuous mixtures of ergodic states is lacking, as

opposed to the finite mixture considered in Theorem III.
Finally, one might hope that our methods can be extended to
models exhibiting disorder, where a gap between the min-
and max-relative entropies would characterize the irrevers-
ibility of conversions between many-body-localized states.
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