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Quantum computing experiments are moving into a new realm of increasing size and complexity, with
the short-term goal of demonstrating an advantage over classical computers. Boson sampling is a promising
platform for such a goal; however, the number of detected single photons is up to five so far, limiting these
small-scale implementations to a proof-of-principle stage. Here, we develop solid-state sources of highly
efficient, pure, and indistinguishable single photons and 3D integration of ultralow-loss optical circuits. We
perform experiments with 20 pure single photons fed into a 60-mode interferometer. In the output, we
detect up to 14 photons and sample over Hilbert spaces with a size up to 3.7 × 1014, over 10 orders of
magnitude larger than all previous experiments, which for the first time enters into a genuine sampling
regime where it becomes impossible to exhaust all possible output combinations. The results are validated
against distinguishable samplers and uniform samplers with a confidence level of 99.9%.
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There has been significant progress in demonstrating the
fundamental building blocks of quantum computers [1–11]
and quantum algorithms [12–15]. Beyond small-scale
demonstrations, the field of quantum computing is heading
toward a new regime with increasing size and complexity,
where the results cannot be efficiently simulated by
classical means [16,17]. Such a goal has been referred to
as quantum computational supremacy [18] and noisy
intermediate-scale quantum technologies [19]. To this
end, experimental efforts have been devoted to increase
both the quality and quantity of qubits in various physical
systems [6–11].
Boson sampling [20] is considered as a strong candidate

for demonstrating the quantum computational supremacy.
It is performed by sending n identical bosons into an
m-mode (m > n) Haar-random interferometer and sam-
pling the output distribution in the photon number basis
from the output Hilbert space of the final state. Because of
the bosonic statistics, the probability amplitudes of the final
state are related to the permanent of submatrices of the
matrix U which describes the interferometer. It is strongly

believed that a moderate-size boson sampling machine will
be intractable to be simulated with state-of-the-art classical
computers [20–22]. It was very recently proposed that the
first application of quantum supremacy would be the
generation of verified random numbers [23,24].
So far, all implementations of boson sampling, using

parametric down-conversion [25–35] or quantum dots
[6,36–38], involved at most up to five detected single
photons and 16 modes. In those proof-of-principle experi-
ments, the full output photon distribution was easily
calculated and could be completely verified, with even
the earliest classical computers. An important goal is to
scale up the boson sampling into a new, computationally
interesting, regime. To this end, the roadmap is to construct
multiphoton boson sampling machines with increasingly
larger photon and mode numbers and faster sampling rates.
For a boson sampler that is large enough to demonstrate a
quantum advantage, the possible number of outputs will be
so large that the output samples will be sparse; i.e., each
output will be observed only once in any reasonable
experiment. The size of the output Hilbert spaces, which
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is one of the manifestations of the highly complex, high-
entropy nature of boson sampling, is a function of both the
photon and the mode number and can be calculated by
ðmþn−1

n Þ. The size of the Hilbert space also determines the
number of random bits generated by a verified random
number generator. The output state spaces ranged from 20
to 15 504 in the previous experiments [6,25–38], in which
all the possible output events were collected for proof-of-
principle studies. But those sizes are still much smaller
from the actual sampling regime in which quantum
supremacy can be demonstrated.
In this work, we scale up the boson sampling with 20

photons injecting into a 60-mode interferometer where the
output Hilbert space reaches 3.7 × 1014, which is over 10
orders of magnitude larger than the previous work. In such
an exponentially large Hilbert space, for the first time, it
becomes impossible in a boson sampling experiment to
exhaust all possible output combinations.
We start by describing the experimental setup of our

boson sampling machines, which is illustrated in Fig. 1 for
an overview. Pulsed single-photon streams are produced
from an InAs=GaAs quantum dot cooled to 4 K and
deterministically coupled to a micropillar cavity [39,40].
Under pulsed resonant laser excitation [41], a clear Rabi
oscillation of the resonance fluorescence single-photon
counts as a function of the pump power is shown in
Fig. 2(a). At a pulse with a repetition rate of 76 MHz, we
eventually detect ∼16 million counts per second single-
mode fiber-coupled photon counts on a superconducting
nanowire single-photon detector with an efficiency of 82%.
The single-photon purity of the solid-state source is
characterized by Hanbury Brown–Twiss measurements,
which reveal a second-order correlation of 0.025(1) at
zero-time delay [Fig. 2(b)], indicating a single-photon

purity of 97.5%. The photon indistinguishability is then
measured by Hong-Ou-Mandel interferometers with two
photon emission time separation up to ∼6.5 μs. The
measured photon indistinguishability is 0.954(1) at a short
time separation of ∼13 ns, which slightly drops to a plateau
of 0.923(1) between ∼1 and ∼6.5 μs [Fig. 2(c)]. Such a
semiconductor source of polarized, high-brightness, high-
purity, and near-transform-limited single photons is the
central quantum resource for boson sampling.
The single-photon stream is then deterministically

demultiplexed into 20 spatial modes using fast optical
switches, arranged in a treelike structure (see Fig. 1). Each
switch consists of a polarizing beam splitter (with an
extinction ratio >2000∶1) and an active Pockels cell that
is synchronized to the laser pulses and on demand rotates
the photon polarization (with an extinction ratio >100∶1).
The measured average system efficiency of the switches
(including the transmission efficiency, single-mode fiber
coupling efficiency, and extinction ratio of Pockels cells) is
83% [42]. After finely compensating for their relative time
delay, these 20 demultiplexed modes are fed into a fully
connected 60-port linear optical network. Finally, the 60
output ports are fed into 60 superconducting nanowire
single-photon detectors with their efficiencies varying from
60% to 82%.
Multimode interferometers are usually constructed by

beam splitters and phase shifters in a triangular [6,46] or
rectangular [38,47] configuration. Here, we put forward a
new, more compact 3D design that combines phase stability,
full connectivity, matrix randomness, near-perfect wave-
packet overlap, and near-unity transmission rate simulta-
neously [see Figs. 3(a) and 3(b) and its caption] but at the
cost of nonuniversality and nonreconfigurability. Such an
optical network consists of 396 beam splitters and 108

/2 /4
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Quantum dot
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20 input single
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FIG. 1. Experimental setup of boson sampling. A single InAs=GaAs quantum dot, resonantly coupled to a microcavity yielding a
Purcell factor of ∼18, is used to create pulsed resonance fluorescence single photons. For demultiplexing, 19 pairs of Pockels cells (PCs)
and polarized beam splitters (PBSs) are used to actively translate a stream of photon pulses into 20 spatial modes. Optical fibers with
different lengths are used to compensate time delays. The 20 input single photons are injected into a 3D integrated, 60-mode ultralow-
loss photonic circuit (see Fig. 3 for more details), which consists of 396 beam splitters and 108 mirrors. Finally, the output single
photons are detected by 60 superconducting nanowire single-photon detectors with efficiencies ranging from 0.6 to 0.82. All
coincidence are recorded by a 64-channel coincidence count unit (not shown).
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mirrors and can be used to implement 60 × 60 unitary
transformations.We useMach-Zehnder-type interferometry
to calibrate spatial overlap between any two input ports,
which shows an average visibility above 99.9%. From all 20
input ports, the transmission rate of the whole optical
network is measured to be 0.987(2), and the average
coupling efficiency in all 60 output ports is 0.902(37).
We use a narrow-band laser to reconstruct the corre-

sponding unitary matrix of the 3D 60 × 60 interferometer
[48]. The measured elements of the amplitudes and phases
are shown in Figs. 3(c) and 3(d), respectively. If the
generated matrix is unitary, the product of this matrix
and its Hermitian conjugate should be an identity matrix.
The result is plotted in Fig. 3(e), showing that the average
of the nondiagonal elements is 0.01(1), thus confirming the
high degree of unitarity of the generated matrix. Moreover,
for the hardness arguments regarding boson sampling to
hold, the matrix should be randomly drawn according to the
Haar measure. We compare our measured elements with
ideal Haar-random matrix elements. Figure 3f [3(g)] shows
the statistical frequency of the measured 1200 elements of
amplitude (phase), in which the distribution of phase agrees
with the predication from the Haar-random matrix, while
the distribution of amplitude has an overlap with that
expected from the Haar-random case of 0.78(7).
We use fidelity (F) and total variation distance (D) to

quantify the performance of the boson samplers, which are
defined by F ¼ P

i
ffiffiffiffiffiffiffiffiffi
qipi

p
and D ¼ ð1=2ÞPi jqi − pij (pi

and qi denote the theoretical and experimental probability
of the ith basis, respectively). For a perfect boson sampler,
the fidelity should equal to 1 and the distance should be 0.
To test that the boson sampling setup works properly,
we first analyze arbitrary two-photon input configurations,
of which there are 190 in the 20-input setup. We obtain
∼300 000 samples for each configuration (∼170 times
larger than the state spaces). The measured fidelities and
distances between the experimental and ideal cases are

illustrated in Fig. 4(a), from which an average fidelity of
0.995(3) and distance of 0.043(5) are extracted. If we use
the Clifford-Clifford sampling algorithm [49] to generate
the same number of samples on a classical computer, the
fidelity (total variation distance) is 0.998 (0.035), which is
only slightly better than those from the quantum machine.
This indicates a high level of interference between any two
modes in the 60-mode interferometer. The small error in the
two-photon test is mainly from the finite sample number
and statistics. Next, we register the whole output distribu-
tions of the noncollision events from three- and four-photon
boson sampling, which are plotted in Figs. 4(b) and 4(c),
respectively. The measured fidelities and distances are
0.988(1) and 0.095(1) for the former and 0.984(1) and
0.143(1) for the latter. These results are in excellent
agreement with the theory taking into account the realistic
single-photon source and optical network [45,50–53],
which confirms that the boson-sampler works properly.
As the photon number increases, the output Hilbert

spaces expand exponentially, which makes it infeasible
to register the whole distribution—but only sampling is
possible, a regime long waited for in boson sampling
experiments. Meanwhile, due to the passive nature of the
boson sampling protocol, the output multiphoton coinci-
dence rate drops exponentially. In our experiment, when the
photon number exceeds four, the registered distributions
become sparse; that is, most of the output combinations
record zero events.
We operate both the standard Aaronson-Arkhipov model

[20] and Aaronson-Brod model of boson sampling [54]
with photon loss. In the former, all the n input photons are
detected in the output. In the latter, nþ k photons are sent
in, but in the output only n-fold coincidences are detected.
The sampling rate of the latter is enhanced by a factor of
approximately ðnþk

n Þ compared to the former. Ongoing
complexity analysis [45,50,54] shows that the loss rate
in Aaronson-Brod sampling should be under a certain
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FIG. 2. Characterization of the single-photon source. (a) By varying the amplitude of the pumping laser field, a Rabi oscillation up to 4
is observed. At π pulse, ∼16.3 million single photons per second are recorded by a superconducting nanowire single-photon detector.
(b) Characterization of single-photon purity using the second-order correlation function. The strongly antibunched peak at zero-time
delay reveals g2ð0Þ ¼ 0.025ð1Þ (c) Measurement of photon indistinguishability by Hong-Ou-Mandel interference between two photons
with different emission time separations. The extracted photon indistinguishabilities are 0.954(1), 0.948(1), 0.933(1), 0.929(1), 0.922
(1), and 0.923(1) at emission time separations of 13 ns, 39 ns, 210 ns, 395 ns, 1.8 μs, and 6.5 μs, respectively. The data are fitted by a
model considering Markov noise.
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threshold to achieve a quantum advantage. In this work,
we perform the standard model of boson sampling for
coincidence detection of 10 photons or below, and the lossy
boson sampling in the regime of more involved photons up
to 20 input and 14 detected photons. As plotted in Fig. 4(d),
the coincidence rate in the standard boson sampling is
295 Hz for five photons, which is 60 times higher than in
Ref. [6], and drops to 0.01 Hz for ten-photon coincidence.
Tolerating one-photon loss can give rise to an

approximately 3–10 times enhancement in the sampling
rate, as plotted in Fig. 4(d). For 20 input photons with six
lost, we detect a 14-photon coincidence rate of∼6 per hour,
which allows us to obtain 150 samples after a collection
time of 26 h. In all settings, we obtain at least a few
hundred samples to characterize our multiphoton boson
sampler.
Using the boson sampling parameters in this experiment,

we calculate the state spaces and plot them in Fig. 4(e).
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FIG. 3. Construction and characterization of the 60-mode photonic network. (a) The 60-mode interferometer consists of
one rectangular piece and two triangular pieces. The rectangular is fabricated by bonding (through intermolecular force) six
trapezoidal pieces with a size of 28.28 × 28.28 × 4.00 mm3. The triangular is constructed in a similar way, with a size of
24.00 × 24.00 × 20.00 mm3. The bonding interfaces are coated with random polarization-dependent beam-splitting ratio. The
trapezoidal pieces are cut and bounded with a dimension tolerance of < 5 μm and parallel precision better than 5”. The design
ensures that any possible spatial mismatch is much smaller than the coherence length of the quantum-dot single photons (∼30 mm).
(b) Illustration of light propagation inside the 3D photonic circuit. The rectangular piece has six horizontal ten-mode layers, while the
two triangular ones have ten vertical six-mode layers. In the rectangular piece, only the photons in the same horizontal layer can interfere
with each other but not with vertically different layers. After that, ten vertical layers are incorporated, which are to make the photons
from different horizontal layers interfere with each other. Therefore, the interferometer is fully connected. (c) The measured 1200
elements of amplitude. These values are determined by the recorded counts of the 60 single-photon detectors when we inject photons in
every input port one by one. (d) The measured 1200 elements of amplitude. These elements are measured using Mach-Zehnder-type
interference with a narrow-band laser. (e) Unitarity test of the reconstructed matrix. All output probabilities are normalized to unity,
corresponding to 20 diagonal elements. The average of all off-diagonal elements is as small as 0.01(1), confirming that the matrix is well
reconstructed. (f) Statistical histogram of 1200 elements of amplitude. (g) Statistical histogram of 1200 elements of phase. The phase is
uniformly distributed from −π to π.

PHYSICAL REVIEW LETTERS 123, 250503 (2019)

250503-4



While the previous experiments were limited to state
spaces between 20 and 15 504, our work achieves Hilbert
space dimensions up to 3.7 × 1014 in the 20-photon-input
14-output boson sampling, which is more than 10 orders of
magnitude larger than before. With such enormous output
state spaces, it is no longer possible to collect the full
distribution as in the previous small-scale experiments
[6,25–38]. In fact, theoretically calculating the full prob-
ability distribution in the 20-photon-input 14-output boson
sampling will take hours using supercomputers.
While full certification of large-scale boson sampling is

also strongly conjectured to be intractable for classical
computation [55], there are methods for validating boson
sampling that can provide supporting or circumstantial
evidence for the correct operation of this protocol. We
use two broadly implemented statistical tests among the
various validation protocols developed [6,29–38,56–63] to
first rule out a possible hypothesis that the input photons
are distinguishable, which is very relevant to the exper-
imental implementations, because single-photon indistin-
guishability is most susceptible to the decoherence. We

perform Bayesian analysis [29] for various input-output
configurations. Typical results with 14–20 input photons are
plotted in Fig. 5(a), showing an increasing difference
between indistinguishable bosons (solid) and distinguish-
able bosons (hollow). With ∼50 samples, these analyses
already reach confidence levels of∼99.9% that these results
are more likely from indistinguishable bosons. The vali-
dation data using the likelihood ratio test [29] and that for
other photon numbers can be found in Ref. [42]. Second, we
aim to rule out uniform distribution; that is, the samples
scatter uniformly to the overall distribution. We employed
the row-norm estimator test [56], where the increasing
difference between experimental data (solid) and simulated
uniform samples (hollow) indicates that our results cannot
be reproduced by a uniform sampler [Fig. 5(b)].We hope our
experiment will inspire new theoretical methods for quanti-
tative characterizations for large-scale boson sampling,
for example, to develop validation schemes which have
some degree of computational security against spoofing, or
to improve the existing classical simulation strategies for
realistic boson samplers.
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Our results show that we can experimentally access
quantum states of 20 photons in a 60 × 60 interferometer
and use it to perform a quantum computational task
increasingly difficult for classical computers with a grow-
ing number of photons. To bring the current work in
relation with other general photonic qubit experiments, the
Hilbert space size of our experiment is 3.7 × 1014 ∼ 248

(equivalent to 48 qubits), which is orders of magnitude
larger than all previous work [7,33,64,65]. The mode
dimension of the 3D interferometer in our design can be
directly doubled by using spatial-polarization encoding and
scaled up to a few hundreds. With ongoing improvements
of single-photon source [66] and detection efficiency, our
experimental approach points a way to the noisy inter-
mediate-scale quantum regime through boson sampling.
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