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We study quantum metrology for unitary dynamics. Analytic solutions are given for both the optimal
unitary state preparation starting from an arbitrary mixed state and the corresponding optimal measurement
precision. This represents a rigorous generalization of known results for optimal initial states and upper
bounds on measurement precision which can only be saturated if pure states are available. In particular, we
provide a generalization to mixed states of an upper bound on measurement precision for time-dependent
Hamiltonians that can be saturated with optimal Hamiltonian control. These results make precise and reveal
the full potential of mixed states for quantum metrology.
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The standard paradigm of quantum metrology involves
the preparation of an initial state, a parameter-dependent
dynamics, and a consecutive quantum measurement of
the evolved state. From the measurement outcomes the
parameter can be estimated [1–3]. Naturally, it is the goal
to estimate the parameter as precisely as possible, i.e.,
to reduce the uncertainty Δα̂ ¼ Varðα̂Þ1=2 of the estimator
α̂ of the parameter α that we want to estimate. We consider
single parameter estimation in the local regime where
one already has a good estimate α̂ at hand (typically from
prior measurements) such that this prior knowledge can be
used to prepare and control consecutive measurements.
Quantum coherence and nonclassical correlations in quan-
tum sensors help to reduce the uncertainty Δα̂ compared to
what is possible with comparable classical resources [4,5].
The ultimate precision limit for unbiased estimators is given
by the quantumCramér-Rao boundΔα̂ ≥ ðMIαÞ−1=2, which
depends on the number of measurements M and the
quantum Fisher information (QFI) Iα which is a function
of the state [6,7]. When the number of measurements is
fixed, as they correspond to a limited resource, precision is
optimal when the QFI is maximal which involves an
optimization with respect to the state.
In this Letter, we consider a freely available state ρ,

unitary freedom to prepare an initial state from ρ, and
unitary parameter-dependent dynamics of the quantum
system (see Fig. 1). The parameter-dependent dynamics
will be called sensor dynamics in the following in order to
distinguish it from the state preparation dynamics. For
instance, in a spin system the unitary freedom can be used
to squeeze the spin before it is subjected to the sensor
dynamics, as it is the case in many quantum-enhanced
measurements [8–11]. In the worst-case scenario, only the
maximally mixed state is available, which does not change
under unitary state preparation or unitary sensor dynamics

and, thus, no information about the parameter can be
gained. In the best-case scenario, the available state is
pure, and the maximal QFI as well as the optimal state to be
prepared are well known [12,13].
The appeal and advantage of the theoretical study of

unitary sensor dynamics lies in the analytic solutions that
can be found that allow fundamental insights in the limits
of quantum metrology and the role of resources such as
measurement time and system size. The QFI maximized
with respect to initial states, also known as channel QFI,
can be reached only with pure initial states. If only mixed
states are available, as it is usually the case under realistic
conditions, this upper bound cannot be saturated and
therefore has limited significance. In fact, if pure states
are not available, the question for the maximal QFI and
optimal state to be prepared is an important open problem
[14,15]. The main result of this Letter, Theorem 1 below, is
the complete solution of this problem.
The solution is relevant for practically all quantum

sensors, as perfect initialization to a pure state can only
be achieved to a certain degree that varies with the quantum
system and the available technology. For example, nitro-
gen-vacancy (NV) center arrays [16,17] or atomic-vapor
magnetometers [18,19] operate with mixed initial states due
to imperfect polarization and competing depolarization
effects [20,21]. Particularly relevant is the example of
sensors based on nuclear spin ensembles that typically

FIG. 1. Schematic representation of the metrology protocol.
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operate with nuclear spins in thermal equilibrium, such that
at room temperature the available state is strongly mixed
[22]. Hence, the full potential of quantum metrology is
exploited only when the mixedness of initial states is taken
into account [14,23–25].
We consider arbitrary, possibly time-dependent

Hamiltonians HαðtÞ for the sensor dynamics. The corre-
sponding unitary evolution operator is Uα ≔ T ðexp½−i=ℏR
T
0 HαðtÞdt�Þ, where T denotes time ordering, T is the total
time of the sensor dynamics, and we set ℏ ¼ 1 in the
following. In the simplest case, dynamics is generated by
a “phase-shift” or “precession” Hamiltonian proportional
to the parameter α, Hα ¼ αG, with some parameter-
independent operator G. The parameter dependence of
the sensor dynamics is characterized by the generator hα ≔
iU†

αð∂Uα=∂αÞ, which simplifies to G for phase-shift
Hamiltonians [12,26–28].
By introducing the eigendecomposition of the prepared

initial state ρ ¼ P
d
k¼1 pkjψkihψkj, where d is the dimension

of the Hilbert space, the QFI can be expressed as [7], [14]

IαðρÞ ≔ 2
Xd
k;l¼1

pk;ljhψkjhαjψlij2; ð1Þ

with coefficients

pk;l ≔
� 0 if pk ¼ pl ¼ 0;

ðpk−plÞ2
pkþpl

else:
ð2Þ

Also, let UðdÞ denote the set of d × d unitary matrices.
Theorem 1: For any state ρ and any generator hα with

ordered eigenvalues p1 ≥ � � � ≥ pd and h1 ≥ � � � ≥ hd,
respectively, the maximal QFI with respect to all unitary
state preparations UρU†, U ∈ UðdÞ, is given by

I�α ≔ max
U

IαðUρU†Þ ¼ 1

2

Xd
k¼1

pk;d−kþ1ðhk − hd−kþ1Þ2: ð3Þ

Let jhki be the eigenvectors of the generator, hαjhki ¼
hkjhki. The maximum I�α is obtained by preparing the initial
state

ρ� ¼
Xd
k¼1

pkjϕkihϕkj; ð4Þ

with [29]

jϕki ¼

8>>><
>>>:

jhkiþjhd−kþ1iffiffi
2

p if 2k < dþ 1;

jhki if 2k ¼ dþ 1;
jhki−jhd−kþ1iffiffi

2
p if 2k > dþ 1:

ð5Þ

The proof is based on the Bloomfield-Watson inequality
on the Hilbert-Schmidt norm of off-diagonal blocks of a
Hermitian matrix [30,31] and is given in the Supplemental
Material [32]. The idea of the proof is to construct an upper
bound for the QFI in Eq. (3) that exhibits a simpler
dependence on the coefficients pk;l. Then we maximize
the upper bound by exploiting the Bloomfield-Watson
inequality. The proof is concluded by showing that at its
maximum the upper bound equals the QFI.
It is important to notice that the rank r of the state ρ plays

a crucial role both for the maximal QFI and for the optimal
state: in order to reach the maximal QFI I�α, the choice
of the jϕki corresponding to vanishing pk, i.e., for k > r,
is irrelevant. This is best exemplified by considering the
well-known case of pure states, characterized by p1 ¼ 1
and r ¼ 1 [12,26,27,33,34]. Then, the maximal QFI in
Eq. (3) simply becomes ðh1 − hdÞ2 and is obtained by
preparing an equal superposition ðjh1i þ jhdiÞ=

ffiffiffi
2

p
of the

eigenvectors corresponding to the minimal and maximal
eigenvalues of hα. When the rank is increased but remains
less than or equal to ðdþ 1Þ=2, the optimal QFI is equal toP

r
i¼1 piðhi − hd−iþ1Þ2. This can be seen as a convex sum

of pure-state QFIs [35].
The situation changes when the rank is increased even

further. For example with r ¼ 4 and d ¼ 5, the maximal
QFI is equal to p1ðh1 − h5Þ2 þ ½ðp2 − p4Þ2=ðp2 þ p4Þ�
ðh2 − h4Þ2. Further, for a Hilbert space of odd dimension,
the vector jϕðdþ1Þ=2i ¼ jhðdþ1Þ=2i is an eigenstate of the
generator: it remains invariant under the dynamics and
does not contribute to the QFI. For example for both r ¼ 2
and r ¼ 3 with d ¼ 5, the optimal QFI is given by
p1ðh1 − h5Þ2 þ p2ðh2 − h4Þ2.
We obtained I�α by optimizing with respect to unitary

state preparation while keeping the sensor dynamics fixed
(see Fig. 1). However, in practice it is often possible not
only to manipulate the available state but also the sensor
dynamics by adding a parameter-independent control
Hamiltonian HcðtÞ to the original Hamiltonian HαðtÞ.
While Theorem 1 holds for any HαðtÞ, it is an interesting
question to what extent the maximal QFI in Eq. (3) can be
increased by adding a time-dependent control Hamiltonian.
Again, the answer is only known for pure states [34]. The
question, how this generalizes if the available state is
mixed, brings us to
Theorem 2: For any state ρ with ordered eigenvalues

p1 ≥ � � � ≥ pd and any time-dependent HamiltonianHαðtÞ,
where μ1ðtÞ ≥ � � � ≥ μdðtÞ are the ordered eigenvalues of
∂αHαðtÞ ≔ ∂HαðtÞ=∂α, an upper bound for the QFI is
given by

Kα ¼
1

2

Xd
k¼1

pk;d−kþ1

�Z
T

0

½μkðtÞ − μd−kþ1ðtÞ�dt
�

2

: ð6Þ

Let jμkðtÞi be the time-dependent eigenvectors of ∂αHαðtÞ,∂αHαðtÞjμkðtÞi ¼ μkðtÞjμkðtÞi. The upper bound Kα is
reached by preparing the initial state
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ρ� ¼
Xd
k¼1

pkjϕkihϕkj; ð7Þ

with

jϕki ¼

8>>><
>>>:

jμkð0Þiþjμd−kþ1ð0Þiffiffi
2

p if 2k < dþ 1;

jμkð0Þi if 2k ¼ dþ 1;
jμkð0Þi−jμd−kþ1ð0Þiffiffi

2
p if 2k > dþ 1;

ð8Þ

and choosing the Hamiltonian control HcðtÞ such that

UαðtÞjμkð0Þi ¼ jμkðtÞi ∀ k ¼ 1;…; d ∀ t; ð9Þ

where

UαðtÞ ¼ T
�
exp

�
−i

Z
t

0

½HαðτÞ þHcðτÞ�dτ
��

: ð10Þ

The proof (see the Supplemental Material [32]) starts by
rewriting hα as in Ref. [[34] Eq. (6)] and shows that Eq. (6)
is an upper bound for Eq. (3). We use the Schur convexity
[38] of Eq. (3) and the inequalities from K. Fan [39,40] for
eigenvalues of the sum of two Hermitian matrices.
One of the strengths of the bound Kα is that it is given by

the eigenvalues of ∂αHαðtÞ and does not depend on the full
unitary operator of the sensor dynamics which is hard to
calculate for time-dependent Hamiltonians. The optimal
initial state with Hamiltonian control in Theorem 2 differs
from the optimal initial state without Hamiltonian control in
Theorem 1 by the fact that the eigenvectors of the generator
hα in Eq. (5) are replaced by those of ∂αHαð0Þ in Eq. (8).
The reason for this is that the optimal initial state of
Theorem 1 is the most sensitive state with respect to the
sensor dynamics Uα. However, if the Hamiltonian is time
dependent, the state which is most sensitive to the sensor
dynamics at time t will also be time dependent in general.
Since the Hamiltonian control is allowed to be time
dependent, we can take this into account and ensure that
the optimal initial state evolves such that it is most sensitive
to the sensor dynamics for all times t. This corresponds to
the condition in Eq. (9). Only in special cases, such as
phase-shift Hamiltonians Hα ¼ αG, we have hα ¼ ∂αHα

and, thus, the optimal initial states of Theorems 1 and 2 are
the same. If they are not the same, a HamiltonianHα can be
seen as suboptimal and requires correction by means of
the Hamiltonian control in order to reach the upper bound
of Theorem 2.
Formally, the optimal control Hamiltonian from

Theorem 2 depends on the (unknown) parameter α. Since
we are in the local parameter estimation regime, we have
knowledge (from prior measurements) about α such that α
can be replaced by the estimate α̂. It was shown that replacing
α by α̂ in the optimal control Hamiltonian does not ruin the

benefits from introducing Hamiltonian control [34], and
Hamiltonian control was applied experimentally with
great success in Ref. [41]. For a more detailed discussion
of control Hamiltonians we refer to the work of Pang et al.
[34,42].
As applications of our theorems we consider two exam-

ples: the estimation of a magnetic field amplitude and the
estimation of the frequency of an oscillating magnetic field.
Both cases can be described with the general Hamiltonian of
a systemofN spin-j particles subjected to a (time-dependent)
magnetic field

HðtÞ ¼
XN
k¼1

BfðtÞSðkÞz þHint; ð11Þ

with the magnetic field amplitude B, some time-dependent

real-valued modulation function fðtÞ, and spin operator SðkÞz

in the z direction of the kth spin. We use the standard

angular momentum algebra, SðkÞz jj; mi ¼ mjj;mi with
m ¼ −j;…; j. Hint is independent of B and takes into
account possible interactions between spins. This rather
general Hamiltonian can be seen as an idealization of
quantum sensors based on arrays of NV centers
[16,17,43], nuclear spin ensembles [44], or vapor of alkali
atoms [19]. Due to imperfect polarization and competing
depolarization effects [20,21,45,46], the available states
are mixed.
Here, we consider the available state of each of the N

spins to be described by a spin-temperature distribution
[independent of the Hamiltonian in Eq. (11)]

ρth ¼
eβSz

Z
; ð12Þ

with partition function Z ¼ Pj
m¼−j e

βm, and inverse (effec-
tive) temperature β. Equation (12) was derived for optically
polarized alkali vapors in [[20] Eq. (112)], and we assume
that it is also a good approximation for the other spin-based
magnetometers mentioned. β is related to the degree of
polarization P ∈ ½0; 1� by β ¼ ln½1þ P=ð1 − PÞ�; P ¼ 1
corresponds to a perfectly polarized spin in z direction,
described by a pure state, and P ¼ 0 corresponds to an
unpolarized spin, i.e., a maximally mixed state. The
available state of the total system is a tensor product of
spin-temperature distributions, ρ ¼ ρ⊗N

th .
For the estimation of the amplitude Bwe assume that the

modulation fðtÞ is known [the case of unknown fðtÞ would
correspond to waveform estimation [47,48] ]. This is
naturally the case for (quasi)constant magnetic fields,
periodic fields of known frequency, or, for example, when
the modulation originates from a relative movement of
sensor and environment (the source of B) that is tracked
separately with another sensor. The maximal QFI obtained
by using control Hamiltonians (cf. Theorem 2) for estimat-
ing the amplitude B is found to be
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KB ¼ g2ðTÞ
XNj

k¼−Nj

qðkÞ sinh2ðβkÞ
ZN coshðβkÞ ð2kÞ

2; ð13Þ

where qðkÞ takes into account the degeneracy of eigenval-
ues of ρ and ∂BHðtÞ ≔ ∂HðtÞ=∂B. It follows from the
definition of the tensor product that the degeneracy of the
kth eigenvalue of both, ρ and ∂BHðtÞ, where eigenvalues
are in weakly decreasing order, equals the number of
possibilities qðkÞ of getting a sum k when rolling N fair
dice, each having 2jþ 1 sides corresponding to values
f−j;…; jg (see the Supplemental Material [32]) [[49]
p. 23–24]:

qðkÞ ≔
XN
l¼0

ð−1Þl
�
N
l

��
kþ Nðjþ 1Þ − 1 − lð2jþ 1Þ

N − 1

�
;

ð14Þ

where the binomial coefficient ðabÞ is set to zero if one or
both of its coefficients are negative. The dependence on
measurement time T is given by gðTÞ ¼ R

T
0 jfðtÞjdt.

The QFI in Eq. (13) exhibits a complicated dependence
on the number of thermal states N and their spin size j.
However, by deriving a lower bound for Eq. (13), we prove
that the QFI scales ∝ N2 for any j as well as ∝ j2 for any N.
In particular, we find KB ¼ 4N2hSzi2 þOðNÞ where
hSzi ¼ tr½ρthSz�, and OðNÞ denotes terms of order N and

lower order. In the limit of large temperatures, hSzi2 decays
as β2 (see the Supplemental Material [32]).
This means that Heisenberg scaling [1,50,51], i.e., the

quadratic scaling with the system size j or the number of
particles N, is obtained for the optimal unitary state
preparation even if only thermal states are available.
Note that this also holds in the context of Theorem 1 if
the generator equals Sz. Importantly, Heisenberg scaling
is found for any finite temperature of the thermal state;
only in the limit of infinite temperature, the available state
is fully mixed and the QFI vanishes.
In order to attain the QFI (13), the conditions (9) must be

fulfilled. In particular the Hamiltonian control must cancel
interactions between the spins; i.e., Hint must be compen-
sated. Also, every time the modulation function fðtÞ
changes its sign, we must apply a transformation which
interchanges the eigenstates corresponding to a (degener-
ate) eigenvalue eβk=ZN of ρ with the eigenstates corre-
sponding to the (degenerate) eigenvalue e−βk=ZN for all
k ¼ 1;…; Nj. This is realized, for instance, with a local π
pulse about the x axis, which interchanges jj; mi and
jj;−mi for every single spin. The π pulses ensure optimal
phase accumulation of the optimal state given by Eq. (7)
(cf. Fig. 2).
The degeneracy of eigenvalues of ρ and ∂BHðtÞ leads to

a freedom in preparing the optimal initial state. The special
case of qubits, j ¼ 1=2, constant magnetic field, fðtÞ ¼ 1,
and no interactions, Hint ¼ 0, was studied by Modi et al.
[14]. In this case, no Hamiltonian control is required, which
brings us back to Theorem 1. They conjectured that a
unitary state preparation consisting of a mixture of GHZ
states is optimal in their case and calculated the QFI.
Theorem 1 confirms their conjecture.
If, instead of the amplitude, we want to estimate the

frequency ω of a periodic magnetic field with known
amplitude B, fðtÞ ¼ cosðωtÞ, the eigenvalues of ∂HðtÞ=
∂ω are modulated not with fðtÞ but with ∂fðtÞ=∂ω ¼
−t sinðωtÞ, see Fig. 2. The maximal QFI Kω equals Eq. (13)

FIG. 2. Exemplary sketch of time-dependent eigenvalues μ1 ≥
� � � ≥ μ6 of ∂HðtÞ=∂ω corresponding to fðtÞ ¼ cosðωtÞ. Vertical
black lines indicate the position of single-spin π pulses about the
x axis in order to interchange eigenvectors jj; mi ↔ jj;−mi.

(a) (b) (c)

FIG. 3. Eigenvalues p1 ≥ � � � ≥ p4 of initial two-qubit states that maximize the QFI for different values of purity γ. For each value of
purity, eigenvalues pi are found numerically by maximizing the expression for maximal QFI from Theorem 1 in Eq. (3) under the
constraints of fixed purity and conservation of probability,

P
k pk ¼ 1. Different panels correspond to different spectra of the generator

with eigenvalues h1 ≥ � � � ≥ h4 as indicated in the insets. The generator used in panel (a) has two degeneracies, the one in panel (b) has
an equidistant spectrum, and the one in panel (c) has one degeneracy. In panel (c), the line corresponding to p3 overlays the line of p2.
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with the only difference that gðTÞ is replaced by gωðTÞ ¼R
T
0 Btj sinðωtÞjdt ≃ BT2=π, corresponding to a T4 scaling of
QFI, similar to what was reported in Ref. [34]. The optimal
control is similar to the estimation of B: interactions must be
canceled and local π pulses about the x axis must be applied
whenever ∂fðtÞ=∂ω crosses zero.
Theorem 1 also allows us to study the problem of

optimal initial states of given purity γ ¼ trρ2. Fixing only
γ amounts to an additional optimization over the spectrum
of the initial state, which we solve numerically. As an
example, we consider a two-qubit system with eigenvalues
p1 ≥ � � � ≥ p4, see Fig. 3. We observe that different levels
of degeneracy of the spectrum of the generator results in
distinct solutions for the optimal eigenvalues pk.
In conclusion, Theorems 1 and 2 give an answer to the

question of optimal unitary state preparation and optimal
Hamiltonian control for an available mixed state and given
unitary sensor dynamics that encodes the parameter to be
measured in the quantum state. In comparison, distilling
pure from mixed states at the cost of reducing the number
of available probes would be an alternative. However,
probes are typically a valuable resource that is utilized most
efficiently along the lines of Theorem 1 and 2. The two
theorems allow one to study quantum metrology with
mixed states with the same analytical rigor as for pure
states, and the well-known results about optimal pure states
are recovered as special cases. We find that Heisenberg
scaling of the QFI can be reached with thermal states: initial
mixedness is not as detrimental as Markovian decoherence
during or after the sensor dynamics, which is known to
generally destroy the Heisenberg scaling of theQFI [52–54].
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