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We study first passage behaviors in the flow through three-dimensional random fracture networks.
Network and flow heterogeneity lead to the emergence of heavy-tailed first passage time distributions that
evolve with increasing distance between the start and target planes, and transition toward stable laws.
Analysis of the spatial memory of the first passage process shows that particle motion can be quantified
stochastically by a time domain random walk conditioned on the initial velocity data. This approach
identifies advective tortuosity, the velocity point distribution and the average fracture link length as key
quantities for the prediction of first passage times. Using this approach, we develop a theory for the
evolution of first passage times with increasing distance between the start and target planes and the
convergence towards stable laws.
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First passage times play a central role in a wide variety of
processes that depend on or are conditioned by the notion
of first encounters including chemical transformations in
fluctuating environments [1], solute migration in geological
repositories [2], transport in brain microvascular networks
[3], and optimal search strategies [4,5]. However, the
identification of measurable media properties and quanti-
fication of their control on first passage times, which is
critical for transport predictions in complex media, is often
problem dependent and illusive. For hydrodynamic trans-
port in subsurface fracture networks, and natural and
engineered media in general, spatial heterogeneity is the
determining factor. Natural fractured media exhibit multi-
scale features spanning several orders of magnitude [6].
It has been ubiquitously found in field and numerical
experiments that first passage times in such media are
characterized by heavy tails, and that transport is typically
non-Fickian or anomalous [7–14]. These behaviors have
been modeled and interpreted through the use of continu-
ous time and time-domain random walks [15–19], which
account for spatial heterogeneity through a distribution of
mass transfer timescales, as well as multirate mass transfer
approaches [20,21], which model transport under mass
transfer between fast mobile and slow immobile spatial
continua. The complexity of random fracture networks
makes it difficult to link structural and hydrodynamic
properties to large scale transport behaviors [22–24].
Observed power-law tails in first passage time distributions
indicates there may be universal behavior [7,8,10], while

observed dependencies on the injection conditions may
indicate otherwise [25,26].
In this Letter, we address these questions for hydro-

dynamic transport in three-dimensional random fracture
networks by studying the evolution of first passage time
distributions with increasing distance between the start and
target planes. We investigate spatial memory in terms of
streamwise particle velocities, and use this information to
construct a stochastic particle model that accounts for both
universal and nonuniversal aspects of first passage times
as a function of the distance between the start and target
planes. The model is used to develop a theory that provides
conditions on the Eulerian velocity distribution for first
passage times to converge to a stable density. We verify
these predictions through comparison with the model and
discrete fracture network (DFN) particle tracking simulations.
We consider a stochastically generated DFN using the

DFNWORKS software [27,28]. Fracture radii are sampled from
the truncated power-law distribution prðrÞ ∝ ðr=r0Þ−1−γ for
r0 ≤ r < ru, where r0 is the minimum and ru the maximum
radius. Geological fractured media exhibit hierarchical
structures due to the interaction of different fracture growth
processes that gives rise to length distributions that can be
characterized by power laws [6]. We set here γ ¼ 2.6, ru ¼
102r0, and consider a cubic domain of size equal to ru.
Apertures b are constant within each fracture but vary
between fractures being positively correlated to the fracture
size [29]. The resulting network shown in Fig. 1 is semi-
generic in that it is not meant to represent a particular field
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site, but values are selected to mimic the characteristics of
large scale crystalline rock [6,30]. The dimensionless density
of thenetwork is≈14 times larger than the critical percolation
density ensuring that there are multiple paths between the
flow boundaries [31,32].
Pressure gradients in flows through low-permeability

fractured rock are typically small enough that the flow is
laminar and the Stokes equation is an appropriate model
[33]. Furthermore, the large contrast between fracture
length and aperture, typically several orders of magnitude,
allows for the Stokes equation to be reduced to the
Reynolds equation [34]. Flow through the DFN is driven
by a constant mean pressure gradient∇P across the domain
aligned with the 1 axis of the coordinate system. In the
following, flow velocities are scaled by the characteristic
velocity v0 ¼ b20j∇Pj=12μ, where b0 is the minimum frac-
ture aperture and μ dynamic viscosity. Note that in the Stokes
regime velocities scale linearly with the pressure difference
and thus with the characteristic velocity. Details of network
generation, numerical flow simulations, and specific flow
conditions are provided in the Supplemental Material [35],
which includes Refs. [36–43].
Advective transport through the DFN is simulated using

particle tracking. The trajectory xðt; aÞ of a particle starting
at a at time t ¼ 0 is given by the kinematic relationship

dxðt; aÞ
dt

¼ u½xðt; aÞ�: ð1Þ
where uðxÞ is the Eulerian velocity field. Although
apertures are uniform within each fracture, uðxÞ varies
within each fracture plane due to the location of inter-
sections, boundary conditions, and fracture position within
the entire network. One million particles are inserted and
tracked through the system. The initial particle distribution
is flux weighted, this means the particle density at a
position in the injection plane ρðaÞ is weighted by the
magnitude veðaÞ ¼ juðaÞj of the local flow velocity.
At fracture intersections, particles are distributed propor-
tional to the outgoing fluxes. This means a complete
mixing rule is applied. The first passage time to cross a
target plane at a linear distance x1 from the inlet is

taðx1; aÞ ¼ min½tjx1ðt; aÞ ≥ x1�. The probability density
function (PDF) fðt; x1Þ of first passage times sampled
over the ensemble of particles is

fðt; x1Þ ¼
Z

daρðaÞδ½t − taðx1;aÞ�; ð2Þ

where δðtÞ is the Dirac delta. Figure 2 shows fðt; x1Þ from
the DFN simulations at three target planes within the
domain (solid lines). Time is rescaled by the characteristic
advective time τv ¼ r0=v0. We observe relatively abrupt
early arrivals at distances close to the start plane, which
become smoother as distance increases. The late time
behavior is characterized by power-law tails as t−1−β with
β ¼ 3=2 at all distances.
In order to understand these behaviors, we examine the

individual particle motion, and construct a model that
accounts for the physical processes at the origin of the
observed power-law scaling. Figure 3 shows a particle’s
velocity magnitude and fractures visited along the trajec-
tory. This particle passes through 16 fractures that are

FIG. 1. Illustration of the stochastically generated three-
dimensional discrete fracture network. Fractures are colored
according to their radii, darker colors indicating larger fractures.
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FIG. 2. First passage time distributions at (black) x1 ¼ 25r0,
(green) 50r0, and (orange) 102r0 from the start plane. Time is
rescaled by the advection travel scale τv ¼ r0=v0. Solid lines
denote the direct numerical simulations, symbols are the pre-
dictions from the stochastic model, the dashed lines shows the
t−1−β long time scaling with β ¼ 3=2.

FIG. 3. A particle’s velocity magnitude vs sampled along a
trajectory. The particle passes through 16 fractures. Each fracture,
with different radii and permeability, is denoted with a different
shaded band. Particle velocities fluctuate moderately on the
subfracture scale, but there are major velocity changes as particles
transition between fractures.
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denoted with a different shaded band. On the subfracture
scale, the velocities fluctuate moderately. In contrast, major
changes in velocity typically occur as a particle transitions
between fractures. Thus, the number of major velocity
transitions a particle makes depends on the number of
fractures through which it passes, a topological and geo-
metric property of the network.
These observations suggest a stochastic approach that

models particle transitions over the characteristic spatial
fluctuation scale of particle velocities. Velocities decorre-
late as particles transition between fractures. Thus, the
velocity correlation along pathlines can be estimated by
computing the distance between centers of intersections
within fracture planes. For this network, the mean distance
between intersections is 153 m. This hydrodynamically
independent value sets the scale of velocity transitions
denoted by lc. Thus particle motion can be represented by a
time-domain random walk (TDRW) type approach that
advances the particle position by the constant distance lc
along the trajectory, for which it takes the transition time
τ ¼ lc=vs, where vs is the velocity magnitude sampled
equidistantly along a particle path [44]. This approach
assumes Lagrangian ergodicity, which means that the
velocity statistics sampled between particles and along
streamlines are the same.
The steady state distribution psðvÞ of vs is characterized

by two power-law regimes, which can be attributed to
primary flow channels where the highest velocities exist
and secondary structures where low velocities are present
[45]. Such a distribution is well modeled by the Burr
distribution

psðvÞ ¼
α

vc

ðv=vcÞβ−1
½1þ ðv=vcÞβ�α=β−1

; ð3Þ

with α ¼ 1.7, β ¼ 1.5 and vc ¼ 2.48v0, see Fig. 4. Under
ergodic conditions, psðvÞ is related to the PDF peðvÞ of the
Eulerian velocity magnitude veðxÞ through flux weighting
as psðvÞ ¼ vpeðvÞ=hvei [26,44,46]. This relationship con-
nects flow and transport attributes. Furthermore, under
ergodic conditions the PDF of initial velocities p0ðvÞ is
equal to the steady velocity PDF psðvÞ [44]. The differences
illustrated in Fig. 4 are due to the finite size of the start plane.
The particle velocity statistics evolve from the initial to the
steady state distribution. Nonetheless, both psðvÞ and p0ðvÞ
show the power-law behavior ∝ ðv=vcÞβ−1 at low velocities,
which determines the late time scaling of the particle travel
time distributions, as shown in the following.
Note that this approach models the stochastic particle

motion along a trajectory, which is tortuous as a result of
the complex network and flow structure. This means the
distance traveled is not equal to the streamwise distance
between the start and the target planes. We account for this
feature in terms of the advective tortuosity χðx1Þ, the ratio
between the average trajectory length at a given linear

distance, which is illustrated in Fig. 4. In the limit of
x1 → ∞, χðx1Þ converges to χ∞ ¼ hvei=hu1ðxÞi [47],
which here is χ∞ ¼ 2.7. The average trajectory length
from the start to the target plane at x1 ¼ 103 m is
2.4 × 103 m. This means, tortuosity is not stationary at
this distance. Furthermore, the average number of transi-
tions for a particle to cross the domain is 2.4 × 103=lc ≈ 16.
The first passage time taðx1Þ derived from the TDRW

approach is

taðx1Þ ¼
X⌈lðx1Þ=lc⌉−1

i¼0

τi; τi ¼
lc
vi
; ð4Þ

where lðx1Þ ¼ χðx1Þx1 is the average trajectory length.
The ceiling function ⌈lðx1Þ=lc⌉ ¼ nvðx1Þ counts the num-
ber of different velocities experienced by the particle until
first passage at x1. The first time increment τ0 is distributed
according to ψ0ðtÞ ¼ lcp0ðlc=tÞ=t2, where p0ðvÞ is the
velocity PDF at the inlet plane. The random values τi for
i ≥ 1 are identical and independently distributed according
to ψ sðtÞ ¼ lcpsðlc=tÞ=t2, where psðvÞ is the steady state
velocity distribution.
Figure 2 compares the predictions of the model with the

DFN simulations. The stochastic approach predicts both
the tailing behavior and peak times, while the early arrivals
at short distances between the start and target plane are not
captured. In fact, the first passage time PDF shows relatively
abrupt early arrivals at short distances. This behavior can be
traced back to the fact that, at short distances, the early
arrivals are due to only a few long and fast fractures that
connect start to target planes. In this sense, early arrivals are
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FIG. 4. (top panel) Illustration of (empty circles) steady
Lagrangian velocity PDF psðvÞ, (full circles) initial velocity
PDF p0ðvÞ, and (solid line) Burr distribution (3). (bottom panel)
Tortuosity as a function of streamwise distance. The full circles
correspond to the tortuosity values at x1 ¼ 25, 50, 102r0.
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not ergodic as particles only have access to a very limited part
of the velocity spectrum, while the TDRWapproach samples
velocities at each step from the full velocity distribution.
The long time behavior on the other hand is due to particle
motion along more tortuous paths that consist of larger
numbers of slow and short fractures. The particles that
contribute to the tails, in this sense form an ergodic subset,
which is captured by the TDRW model. With increasing
distance from the start plane, xc ≫ lc, more fractures
contribute also to early arrivals, which then become ergodic.
Thus, particle motion and first passage times are well
represented by the stochastic particle motion.
The construction of this stochastic model and its vali-

dation against the DFN simulations provides the starting
point to develop a theory of long term properties of first
passage times in random fracture networks. The model
states first passage times as the sums of independent
random time increments, which is equivalent to construc-
tion of the first passage time distribution fðt; x1Þ as the
nv-fold convolution of the transition time distributions
ψ0ðtÞ and ψ sðtÞ. In Laplace space, this can be written as

f�ðλ; x1Þ ¼ f�nvðλÞ ¼ ψ�
0ðλÞψ�

sðλÞnv−1; ð5Þ

where the asterisk denotes Laplace transformed quantities
and λ the Laplace variable. Also note that the characteristic
tails of the velocity distributions (cf. small velocities in
Fig. 4) show that the transition time distributions ψ0ðtÞ and
ψ sðtÞ behave asymptotically as t−1−β. In fact, the Burr
distribution (3) for the steady state velocity PDF psðvÞ
implies that

ψ sðtÞ ∼
α

τc
ðt=τcÞ−1−β; ð6Þ

for t ≫ τc ¼ lc=vc. Thus, for λτc ≪ 1, the Laplace trans-
forms of ψ0ðtÞ and ψ sðtÞ can be expanded as

ψ�
kðλÞ ≈ exp½−λhτki þ akðλτcÞβ þ � � ��; ð7Þ

where k ¼ 0, s, hτki is the mean transition time and ak a
constant. The dots indicate contributions of order λ2. Using
the approximation (7) for λτc ≪ 1, we obtain

f�nðλÞ ¼ exp ð−λhtniÞg�nðλhtni1=βÞ; ð8Þ

where [35]

g�nðλÞ ¼ exp

�
a0 þ ðn − 1Þas

htni
ðλτcÞβ þ � � �

�
: ð9Þ

In the limit n → ∞, the g�nðλÞ converges toward gβðλÞ ¼
exp ½asðλτcÞβ=hτsi� because higher order contributions go
to zero at least as fast as nðβ−2Þ=β [35]. This means, for
n ≫ 1, g�nðλÞ in Eq. (8) can be replaced by g�βðλÞ. By inverse

Laplace transform of the resulting expression, we then
obtain the following scaling form for fnðtÞ:

fnðtÞ ¼
gβ½ðt − htniÞ=htni1=β�

htni1=β
; ð10Þ

where gβðyÞ is a stable density that is totally skewed to the

right [35,42,43]. This implies that ϕðy; x1Þ ¼ f½tðyÞ; x1�τ1=βm

with y ¼ ðt − τmÞ=τ1=βm and τm ¼ htaðx1Þi converges toward
gβðyÞ for x1 ≫ lc.
Figure 5 (top panel) shows the DFN data and TDRW

prediction rescaled according to ϕðy; x1Þ. The data in the
tails collapse, which indicates the validity of the proposed
reasoning. Note the TDRW approach identifies the first
passage times as sums of independent random variables.
Thus, the observed convergence to a stable density is the
result of the generalized central limit theorem [43,48]
because the distributions of time increments τ are heavy
tailed. This is due to the behavior of the velocity distribu-
tion as psðvÞ ∝ ðv=vcÞβ−1 with β < 2 for small velocities
v < vc. For β > 2, the first passage time distributions
would converge to a stable distribution with a stability
parameter 2, this means a Gaussian distribution. Thus, the
theory identifies the features of the velocity point distri-
bution that lead to the emergence of heavy-tailed first
passage time distributions. Examples for networks with

FIG. 5. (top panel) The predicted Lévy stable density (solid
blue) and rescaled first passage time PDFs from the (symbols)
DFN simulations and (lines) TDRW at distances (black) 25r0,
(green) 50r0, and (orange) 102r0. The dashed and dash-dotted
blue lines show TDRW predictions at distances 103r0 and 104r0
from the inlet. The TDRW uses 107 particles. (bottom panel)
Kullback-Leibler divergence between the rescaled first passage
time distributions and the Lévy stable density plotted as a
function of number of convolutions. The full circles correspond
to the distributions shown in the top panel.

PHYSICAL REVIEW LETTERS 123, 248501 (2019)

248501-4



different exponents β that emphasize the robustness of
these results are given in the Supplemental Material [35].
The convergence towards the stable law depends on the

number of independent transition times and thus velocities
sampled along the path between start and target planes as
illustrated in Fig. 5. The convergence behavior is further
investigated in the TDRW model, which is used to
extrapolate the first passage time distributions to distances
beyond the size of the study domain. The tails converge to
the stable limit law for distances larger or equal than 104 m,
which corresponds to around 200 convolutions, while the
early time behavior converges at slower rate towards the
Lévy stable distribution gβðyÞ. The rate of convergence is
quantified in terms of the Kullback-Leibler divergence
dklðnÞ [49] shown in the bottom panel of Fig. 5. It is fit by a
decaying power-law dklðnÞ ∼ n−2=3, which confirms con-
vergence of fðt; x1Þ toward the stable limit law.
The presented analysis and theory identify the network

properties that control first passage times in random three-
dimensional fracture networks. Network topology and
heterogeneity control the emergence of heavy-tailed first
passage time distributions, which are constructed as con-
volutions of the distributions of transition times over
hydrodynamically independent network features. The veloc-
ity point distribution controls the tailing behavior and thus
the asymptotic stable density to which the first passage times
converge. The convergence toward the universal stable
behavior is controlled by the number of transitions between
fractures along pathways and thus by the average fracture
link length, and the tortuosity of trajectories, which are
measures of the network topology. Despite the apparent
complexity of three-dimensional random fracture networks,
the first passage behavior and the emerging heavy tailed
densities, can be understood and predicted in terms of only a
few network and flow characteristics, which can be deter-
mined from transport-independent network attributes. The
integration of these features in a TDRW modeling approach
allows for the prediction of first passage time distributions at
asymptotic and preasymptotic distances between start and
target planes.
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