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Complex distribution networks are pervasive in biology. Examples include nutrient transport in the slime
mold Physarum polycephalum as well as mammalian and plant venation. Adaptive rules are believed to
guide development of these networks and lead to a reticulate, hierarchically nested topology that is both
efficient and resilient against perturbations. However, as of yet, no mechanism is known that can generate
such networks on all scales. We show how hierarchically organized reticulation can be constructed and
maintained through spatially correlated load fluctuations on a particular length scale. We demonstrate
that the network topologies generated represent a trade-off between optimizing transport efficiency,
construction cost, and damage robustness and identify the Pareto-efficient front that evolution is expected
to favor and select for. We show that the typical fluctuation length scale controls the position of the
networks on the Pareto front and thus on the spectrum of venation phenotypes.
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Complex life would be inconceivable without biological
fluid distribution networks such as animal vasculature,
plant xylem and phloem, the network of fungal mycelia, or
the protoplasmic veins of Physarum polycephalum. These
networks distribute oxygen and nutrients, remove waste,
and serve as long range communication pathways. In
mammals, the vast spectrum of venation network pheno-
types ranges from predominantly treelike networks, such as
the large veins and arteries that service entire organs, to
highly reticulated capillaries within the organs, such as in
the brain or the liver. In plants, leaf network phenotypic
variability even within a single organism can be large, but
typically the hierarchical structure and reticulation are
roughly conserved. However, within a single family there
can be considerable variation [1]. It is therefore natural to
ask whether there might be a single developmental mecha-
nism at play that can generate and interpolate between the
different archetypes on this phenotypic spectrum of vas-
cular networks. Then, evolution would only need to select
for a few parameters in order to tune the network phenotype
for its function. Here, we theoretically identify fluctuations
during development as such a mechanism and pinpoint
networks on a Pareto front possessing optimal trade-offs
between hydraulic efficiency, damage resilience, and cost,
as evolutionarily desirable.
Many frequently competing factors influence which

particular phenotypes are favored by natural selection.
Therefore, it is to be expected that the eventual physical
form of an organism is shaped by trade-offs between
different requirements. Pareto optimality identifies those
phenotypes that strike optimal trade-offs between objec-
tives: The Pareto front is the subset of phenotypes where
performance at one objective cannot be increased without

decreasing performance at another [Fig. 1(b), Ref. [2] ].
One can assume that the phenotypes observed in nature
are found approximately on some relevant Pareto front
because any other trade-off could be improved upon and is
therefore evolutionarily selected against, given otherwise
fixed conditions [3].
In plants, where a well-preserved fossil record of the

venation exists, the fast transitions between reticulate and
nonreticulate patterns over evolutionary time are evidence
for an easily tunable mechanism generating vascular phe-
notypes [4,5]. These transitions can also be effected artifi-
cially by single gene knockouts [6,7] or small changes in
phytohormone concentrations [8]. In the case of animals,
often the positions and dimensions of the largest vessels
(such as the aorta) are genetically predetermined and fixed.
However, smaller vessels are too numerous to be efficiently
genetically encoded and are believed to develop in a self-
organized fashion [9–11]. The abstract mechanisms gov-
erning self-organization of vasculature in plants and animals
appear to be universal [12]. For instance, in plant leaves,
auxin canalization, involving flow of a chemical morphogen,
is believed to guide development of the network pattern
[Refs. [13–17], Figs. 1(c) and 1(d)] and in animal vascu-
lature, vessels respond to wall shear stress [10,18–21].
Generically, these mechanisms involve a process that is
able to remodel an initial mesh of veins according to the flow
of blood (in animals) or cells connected by carrier proteins
according to a morphogen (in plants). If the flow is large,
vessels adapt by increasing their diameter; unused connec-
tions die out. This process has been observed directly in
animals [22] and indirectly in plants [23].
Common to the vascular network development of both

plants and animals, the dynamics of the hydraulic vessel
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conductivities Ke can be modeled by an equation of the
form [12,21,24–26],

dKe

dt
¼ a

ðF2
eÞβ

Ke
α−1 − bKe þ ce−rt; ð1Þ

where a, b, c, and r are non-negative adaptation para-
meters and α ≥ 1, β > 0. Often, α ¼ 1 and c ¼ 0. The
dynamical steady states then correspond to different net-
work topologies.
Equation (1) describes a local positive feedback mecha-

nism. Conductivities Ke grow as controlled by the magni-
tude of a when the current Fe through their vessel is large,
and they decay on a characteristic timescale b−1 when it is
small. The parameter c may be interpreted as the presence
of some growth hormone such as vascular endothelial
growth factor in the case of mammalian vasculature or
background production of auxin transporting proteins in the
case of plant leaves [25]. Potential flow is assumed
throughout [Fig. 1(a), Supplemental Material [27] ]. An
explicit time dependence may exist during development,
for instance, due to growth of the surrounding tissue or
gradual depletion or degradation of the growth factor over a
timescale r−1 [12].

The generic dynamics of Eq. (1) is characterized by two
phases. First, the background production term dominates
and produces a homogeneous network. Then, as back-
ground production becomes increasingly suppressed due to
the exponential decay term, vascular adaptation takes over,
generating veins in a hierarchical fashion: thick, main veins
first and successively thinner veins later while pruning
unused connections, comparable to vascular plexus devel-
opment [18,22,30,31]. The competition between back-
ground production and adaptation leads to hierarchically
ordered steady-state networks [12], which are always
topological trees [32,33]. While nonhierarchical reticula-
tion can be achieved by postulating new chemicals [34], we
now introduce a model of adaptation to fluctuating load that
can produce hierarchical reticulation. Such load fluctua-
tions are common in animals (for instance, Ref. [35]) and
recent work points toward their existence in plants during
development as well [23].
Assuming that the timescale on which fluctuations occur

is much smaller than that of adaptation and that fluctuations
are characterized by approximately static states between
which the system switches quickly, we replace the squared
currents in Eq. (1) by a fluctuation average [19,24,36–40],

F2
e → hF2

ei ¼
1

N

X

state i

ðFðiÞ
e Þ2: ð2Þ

Here, the vector of fluctuating states FðiÞ ¼ ðFðiÞ
e Þ repre-

sents the flows in the network for a particular vector of

source terms SðiÞ ¼ ðSðiÞj Þ, and the summation performs an
ensemble average for a given set of fluctuating states. Then,
the dynamical steady states can correspond to minima of
optimization models [24,36,37].
We generalize these approaches to include collectively

produced fluctuations by using the sources,

SðiÞj
Ŝ

¼ δj0 − ð1 − δj0Þf
�kxj − xik

σ

�
; ð3Þ

where xi is the position of node i, σ is the scale over which

the source strength varies, and
P

j S
ðiÞ
j ¼ 0. The total in-

and outflow is Ŝ. In the rest of this Letter, we consider
Gaussian sources [fðxÞ ∼ e−x

2=2]. Other fðxÞ lead to
qualitatively similar results (Supplemental Material [27]).
Uncorrelated fluctuations are obtained as σ → 0 and lead
to reticulation, but not to significant hierarchical ordering,
similar to Figs. 2(a) and 2(f).
We numerically solve a dimensionless form of Eq. (1),

dK̃e

dt̃
¼ hF̃2

eiβ − K̃e þ κe−t̃=ρ; ð4Þ

where the tilde denotes dimensionless quantities
(Supplemental Material [27]). Following Ref. [12], we

(c) (d)

(a) (b)

FIG. 1. (a) Network model of liquid transport. Edges e of length
Le carry currents Fe. At each node i, a net current Si is drawn
from the network. The net current Si models local sources and
sinks. (b) The Pareto front (orange) is the set of points out of all
possible phenotypes (gray) for which performance cannot be
improved at both objectives simultaneously. For any point not on
the Pareto front [e.g., (i)] a different point can be found [e.g., (ii)]
that has better performance at both objectives. For a point on the
Pareto front, like (iii), this is not possible. The endpoints of the
Pareto front (stars) are functional archetypes. (c) Leaf veins of
Acer platanoides near the “reticulate archetype” identified in this
Letter. (d) Leaf veins of Protium dawsonii show many freely
ending veinlets, similar to what is found near the “tree archetype”
identified in this Letter.
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set α ¼ 1, with other values leading to similar conclusions.
The control parameters are the dimensionless background
strength κ ¼ ðc=aÞŜ−2β, the decay timescale ρ ¼ b=r, and
the fluctuation scale σ. We further fix the nonlinearity at
β ¼ 2=3, which leads to the same steady-state networks as
shear-stress adaptation [24]. This value also corresponds to
a total network volume constraint [12,37]. All networks
start from the same disordered mesh with 445 nodes and
1255 edges. We either place a single inlet at the center of
the network, similar to the retina, or at the boundary, similar
to a leaf. The conductivities are initialized with random
positive numbers, and the scale parameter σ is measured in
units of the mean edge length L̂.
The interplay between background and decay parame-

ters, fluctuation scale, and boundary conditions leads to a
whole spectrum of networks, many of them qualitatively
resembling the networks found in dicot and fern leaves,
or the vasculature of the retina or the brain. They appear
to reproduce well the hierarchical structure seen in real
modern plants and animals (Fig. 2). Reticulation in
particular is controlled by the fluctuation scale σ. For
small σ ≪ L̂, the steady-state networks are highly reticu-
lated, similar to those obtained in Refs. [24,37], and have
little hierarchy [Figs. 2(a), 2(b), 2(f), and 2(g)]. As σ
becomes comparable to or greater than L̂, the networks
gradually lose reticulation and gain hierarchical structure,
independent of the chosen inlet position [Figs. 2(c)–2(e)
and 2(h)–2(j)]. Intuitively, different large-scale sources SðiÞ
centered at nearby nodes overlap almost completely and
effectively act as a single state. Thus, the average is over
only a few effective large-scale sources, which leads to

fewer effective fluctuations and therefore less reticulation.
We develop a unified framework for arbitrary fluctuating
sources by noting that the average flow can be rewritten as
the weighted mean (Supplemental Material [27]),

hF2
ei ¼

1

N

X

i

ðFðiÞ
e Þ2 ¼

X

j

ρjðRðjÞ
e Þ2; ð5Þ

where the ρj are the eigenvalues of the covariance matrix

ð1=NÞPk S
ðkÞðSðkÞÞ⊤, and the RðjÞ

e are the flows induced
by the associated eigenvectors as sources. For values of
σ ≫ L̂, the collective sources themselves become highly
correlated to each other, and the source covariance matrix
is characterized by only a few dominant eigenvalues, with
the vast majority negligibly small, independent of the
specific form of fðxÞ (Supplemental Material [27]).
Armed with this model, we proceed to ask which of the
network topologies it can produce may be favored by
natural selection. We specialize to a single inlet at the
center, with other inlet positions leading to qualitatively
similar results (Supplemental Material [27]).
Hydraulic efficiency, low cost, and robustness are

important but competing requirements, such that we expect
that natural selection strikes a trade-off between them. As a
measure of network efficiency, we consider the hydraulic
power dissipation calculated under nonfluctuating condi-
tions, E ¼ P

e LeF2
e=Ke, where the flows are computed

for a single inlet and uniform sinks. The rationale is that,
during nominal operation, fluctuations are expected to
be small, with large fluctuations to be expected during
development. Next, the network cost, C ¼ P

e LeK
γ
e,

increasing σ

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 2. The variety of network phenotypes that can be produced with a locally adaptive fluctuating load model. All examples lie on the
Pareto front of efficient networks (Fig. 3), thus representing different trade-offs between baseline power dissipation, cost, and damage
robustness. The number of loops and thus damage robustness increases to the right, the value of σ increases from 0.5 to 4.0 to the right.
The Pareto front corresponds to the whole spectrum of “natural” reticulate networks, from highly hierarchical trees, fragile but cheap, to
highly robust reticulate, expensive networks. (a)–(e) The inlet is at the center. (f)–(j) The inlet is at the left side.
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where γ < 1 models an economy of scale, measures the
amount of material investment that goes into constructing
the network. This should be minimized by any organism
that efficiently uses its resources. We set γ ¼ 1=2, which
corresponds to a cost proportional to the total vessel
volume or, equivalently, total material used to construct
the network. Finally, we consider a percolation penalty as a
measure of network robustness, quantifying the cost of
losing part of the vasculature to damage. We choose the
expected fraction of perfused area lost upon removing an
edge, Â ¼ ð1=NeÞ

P
e Ae=Atot, where Ae is the area of the

network that becomes disconnected from the source upon
removal of edge e, Atot is the total area of the network, and
Ne is the number of edges. Efficient network phenotypes
must minimize the cost C, the power dissipation E, and the
percolation penalty A.
Observations of real networks, for instance, in leaves,

reveal that many treelike components exist and that they are
important for transport [41]. This means that, although the
percolation penalty is minimized, it is not expected to be
perfectly zero. Except for very small σ ≪ L̂ and very large
σ ≫ L̂, network phenotypes obtained from our model
generically exhibit these small treelike components within
loops (Fig. 2).
We scanned a portion of the parameter space and

computed the three network measures for a dataset of
steady states of the adaptation dynamics. The steady-state
networks form a dense cloud in the space of network
measures [Fig. 3(a)]. Computing the Pareto front using the
algorithm from Ref. [42] and analyzing its geometry using
PCA reveals an approximately one-dimensional line of
points [Fig. 3(b), Supplemental Material [27] ]. Fixing ρ
and κ, the parameter σ approximately parametrizes net-
works on the Pareto front [Figs. 3(c)–3(e)], such that σ can

be used to tune optimal trade-offs between the three
objectives. The endpoints of the Pareto front correspond
to functional archetypes [3], on one end low-cost, fragile,
and nonreticulate high-dissipation networks (σ ≫ L̂, tree
archetype), and on the other end high-cost, robust, and fully
reticulate low-dissipation networks (σ ≪ L̂, reticulate
archetype) (Figs. 2 and 3). For small σ ≪ L̂, most networks
lie close to the front, whereas for large σ ≫ L̂, there is
greater variability, and many networks lie far from the
front [Figs. 3(a) and 3(b)]. Defining a distance dPðxÞ ¼
minp∈Pkx − pk from the Pareto front P and rescaling all
network measures to have unit variance and mean zero so
as to bring them to the same scale, the mean distance from
the front is hdPi ≈ 0.24. The Pareto front comprises 14% of
all networks. From the remaining ones, 70% lie closer than
average to the front and 30% lie further than average from
the front. Tuning κ by itself without fixing the other
parameters has little effect on the distance of networks
from the Pareto front. However, ρ≳ 10 or 0.5≲ σ ≲ 3 can
generically drive the network phenotypes close to the front
(Supplemental Material [27]). Non-Pareto optimal pheno-
types often show branching with parallel instead of roughly
perpendicular veins (Fig. 4). Open, nonhierarchical venat-
ion patterns similar to those of some networks off the
Pareto front can be found in the leaves of the evolutionarily
archaic Ginkgo biloba tree [Fig. 4(b), Refs. [43,44] ].
We have shown that a simple, easily tunable mechanism

is able to produce an entire spectrum of phenotypic
variation in vascular networks. The shape of networks
on this spectrum can be rationalized by the interplay
between flow fluctuations affecting developmental proc-
esses and natural selection of parameters that lead to
phenotypes on a Pareto front of optimal trade-offs between
efficiency, cost, and resilience. The networks on the Pareto

(a) (b) (c) (d) (e)

FIG. 3. Geometry of the Pareto front of adaptive distribution networks. We plot the phenotypic space of networks obtained from
parameter values ρ ∈ f1; 10; 100g, κ ∈ f1; 0.1; 0.01g, σ ∈ ½0.1; 5�, α ¼ 1; β ¼ 2=3 as an example of the phenotypic space that can be
reproduced using the model. We calculate the Pareto front for simultaneous minimization of power dissipation, network cost, and
percolation penalty. The data were scaled to zero mean and unit variance in each objective. (a) The dataset; colors indicate the value of σ.
The Pareto front is in red, and the non-Pareto networks from Fig. 4 are in blue. (b) Principal component analysis (PCA) embedding of the
Pareto front from (a). 91% of the variance is encoded in the first PCA coordinate, suggesting that the front is approximately one-
dimensional. The first PCA coordinate (PCA 1) approximately parametrizes the Pareto front. Red points correspond to the networks
from Figs. 2(a)–2(e). (c) For all combinations ðρ; κ; σÞ on the Pareto front P we hold ρ and κ fixed and vary σ. For a wide range of σ, the
average distance dPðxÞ ¼ minp∈Pkx − pk from the Pareto front is well below the mean hdPi, suggesting that phenotypes remain close to
the Pareto front (blue curve, shaded region is one standard deviation over combinations of ρ, κ). Varying σ moves linearly along the
Pareto front parametrized by PCA 1 (orange curve). Thus, σ approximately parametrizes the Pareto front. Similarly varying ρ (d) or κ
(e) while holding the other parameters fixed may lead to phenotypes close to the Pareto front for large ρ and all κ, but the position on the
front PCA 1 is random. Thus, ρ and κ cannot be used to parametrize the Pareto front.
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front are reminiscent of modern natural leaf or animal
vasculature, suggesting that natural networks may be
subject to the trade-offs we consider. Networks away from
the Pareto front generically exhibit less hierarchical organi-
zation and less resemblance to modern plants and animals.
Out of the three control parameters of our model, only the
fluctuation scale is highly correlated to the position on the
Pareto front and thus to the position on the spectrum of
vascular networks. This could allow natural selection to
more easily adjust for a given needed functionality, but also
to reuse the same genetic pathway to construct networks
with different functionality in the same organism. Beyond
biology, engineered transport networks such as electrical
power grids are often subject to similar trade-offs, such that
we expect that our analysis will be useful here as well.
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