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We study experimentally the response of a dense sediment of Brownian particles to self-propulsion. We
observe that the ergodic supercooled liquid relaxation is monotonically enhanced by activity. By contrast
the nonergodic glass shows an order of magnitude slowdown at low activities with respect to the passive
case, followed by fluidization at higher activities. Our results contrast with theoretical predictions of the
ergodic approach to glass transition, summing up to a shift of the glass line. We propose that
nonmonotonicity is due to competing effects of activity: (i) extra energy that helps breaking cages;
(ii) directionality that hinders cage exploration. We call it “deadlock from the emergence of active
directionality.” It suggests further theoretical works should include thermal motion.

DOI: 10.1103/PhysRevLett.123.248004

A supercooled liquid is obtained when a system is cooled
down, or compressed, beyond its freezing temperature
while avoiding crystallization. This metastable state dis-
plays slow dynamics but remains ergodic. As the system is
further cooled down or compressed, its dynamics slows
down by orders of magnitude until the system becomes
nonergodic, which means that it can explore only a small
part of its potential energy landscape. It is an amorphous
solid called a glass. Our understanding of this fundamental
state of matter has tremendously progressed in the last
decades [1,2]. Studying the glass transition under non-
equilibrium conditions helps us define what the general
properties of glassy systems and their emergent properties
are when they are driven out of equilibrium. This is where
the field of active matter, which emerged as a new frontier
of science, meets glassy physics. In the past years, the
behavior of assemblies of self-propelled objects stepped up
from a mere zoological curiosity to a flourishing field of
nonequilibrium physics. Rather dilute assemblies of active
particles have been studied extensively by experiments and
numerical simulations [3–9]. Exploring the full range of
densities including ordered phases has been done in some
model systems [10–13] but dense amorphous systems
remain largely unexplored experimentally. Dense assem-
blies of self-propelled particles sit at the convergence of
active matter and glassy physics, and should constitute a
test bed for other such systems as, for example, biological
tissues [14,15].
However, it is still unclear how self-propulsion would

influence the glass transition. Numerical studies have
found either activity-induced fluidization [16,17] or arrest
[18,19]. It was found that the influence of activity could not
be captured by a single parameter such as effective tem-
perature, but that the persistence time of the propulsion
direction played a major role and shifts the position of the
glass transition line in nontrivial ways. For example, in

Ref. [20] glass transition shifts to higher densities with
increasing persistence time at low effective temperature,
whereas the opposite effect is observed at higher effective
temperatures. Besides, Ref. [21] demonstrates that the
monotonicity of the glass transition shift depends on the
microscopic details of the activity.
Most of the previous numerical studies approached the

glass transition from the ergodic supercooled state. They
found that despite a quantitative shift of the glass transition
line, the qualitative phenomenology of glassiness remained
unchanged [20]. However, in the present letter, we show
experimentally that a different, nontrivial phenomenology
emerges beyond the glass transition line in the nonergodic
glass state. We study the influence of self-propulsion on a
sediment of Brownian particles, in order to access states
on both sides of the nonergodic glass transition. Previous
experiments have shown that, in the dilute regime, such
active colloids behave like passive colloids with a higher
effective temperature [22]. Indeed, from the ergodic side,
we observe a monotonic shift of the glass transition line
with effective temperature at fixed persistent time. How-
ever, in the nonergodic side, we find that low activity levels
slow down relaxation of the glass state, followed by a
fluidization at higher activity levels, an observation that
cannot be rationalized from the concept of effective
temperature. We explain our results by considering how
self-propulsion modifies the cage exploration process. We
then discuss how this well-characterized experimental
observation fits into the state of our theoretical under-
standing of active glassy systems.
We study a two-dimensional assembly of gold particles

half-coated with platinum [23] that behave as soft particles
with effective diameter σ0 ¼ 2.2 μm. Accordingly, the
hydrodynamic radius we measure is RH ≈ 0.94 μm <
σ0=2. We track particles using trackpy package [24] and
analyze the bond network using NetworkX package [25].

PHYSICAL REVIEW LETTERS 123, 248004 (2019)

0031-9007=19=123(24)=248004(5) 248004-1 © 2019 American Physical Society

https://orcid.org/0000-0002-2266-6474
https://orcid.org/0000-0001-9585-8613
https://orcid.org/0000-0002-2793-7229
https://orcid.org/0000-0001-5807-9215
https://orcid.org/0000-0002-4754-8933
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.248004&domain=pdf&date_stamp=2019-12-12
https://doi.org/10.1103/PhysRevLett.123.248004
https://doi.org/10.1103/PhysRevLett.123.248004
https://doi.org/10.1103/PhysRevLett.123.248004
https://doi.org/10.1103/PhysRevLett.123.248004


We define the area fraction as ϕ ¼ 4ϱ=ðπσ20Þ, where ϱ is the
number density. In the following we normalize distances by
σ0, and times by rotational Brownian time τR ¼ ð8πηR3

HÞ=
ðkBT0Þ ≈ 5 s, where T0 is the bath temperature. Upon
addition of hydrogen peroxide (H2O2), the particles become
active and self-propelled [26,27]. In order to access a high
density regime, we make in-plane sedimentation which is
obtained by tilting the whole setup with a small angle θ ≈
0.1° [22].An experimental image is shown inFig. 1(a). Since
the density profile depends on the activity [28], we para-
metrize our results by ϕ. We slice the density profile
perpendicularly to gravity so that each slice contains
approximately 1000� 100 particles and has a constant ϕ
within 0.02. We then carry analysis on each slice and show
the results function of ϕ and the activity. Note that the
polydispersity (10%) is not enough to prevent local crystal-
lization at high densities (see SupplementalMaterial, Fig. S1
[29] and Ref. [30]). The results presented here exclude the
crystalline particle and we consider only slices that contains
less than 50% of crystalline particles (ϕ < 0.75).
From the sedimentation experiment on passive colloids

[31], the competition between diffusive motion and gravity
g results in a density profile that has the Boltzmann form at
low enough densities: ϕðxÞ ∼ exp½mgx=D0μ�, where m is

the buoyancy mass, x is the coordinate in the direction of
gravity, D0 ¼ kBT0=μ is the diffusion coefficient, and
μ ¼ 6πηRH is the mobility. Following Refs [32,33], in
the case of self-propelled particles D0 can be replaced by
the longtime effective diffusion coefficient Deffðϕ → 0Þ.
For spherical particles undergoing both Brownian and self-
propelled motions in two dimensions but with 2 degrees
of rotational freedom [33,34], we have Deffðϕ → 0Þ ¼
D0 þ ðFP=μÞ2τR=6, where FP is the magnitude of the
propulsion force.
Equivalently, T0 can be replaced by an effective temper-

ature such that kBTeff ≡ μDeffðϕ → 0Þ. This amounts to
viewing a dilute active system as “hot colloids” with an
effective temperature [33]

Teff

T0

¼ Deff

D0

¼ 1þ 2

9

�
FPRH

kBT0

�
2

: ð1Þ

In our dense experimental system, we assume that the
persistence time is fixed by Brownian rotational diffusion
and is thus constant with activity, as observed in dilute
conditions [28]. Some of us have shown that this hypoth-
esis is sufficient to explain quantitatively the dynamics of
locally closed packed clusters of the same particles [35].
Therefore in the following we characterize activity in every
density regime by Teff=T0 measured from the sedimenta-
tion profile in the dilute regime.
To characterize the relaxation within a slice, we compute

the overlap function [36] FðΔtÞ, which tells us the ratio of
particles that have not moved further than 0.3σ0 during the
lag time Δt. For instance, in Figs. 1(b) and 1(c) we show
FðΔtÞ at various activities but at two fixed densities ϕ ¼
0.65� 0.02 and ϕ ¼ 0.72� 0.02, respectively. At both
densities, the passive case (the black curve) shows two-step
relaxation, with almost complete decay of FðΔtÞ within the
experimental time. The plateau at the intermediate Δt
indicates that each particle is trapped by its neighbors.
At long times, the system exits the plateau hinting that the
particles manage to diffuse away from their original
positions. This is a typical glassy behavior. At high levels
of activity (Teff=T0 ¼ 3.0 and 4.0), the plateau disappears
and the system completely relaxes. At ϕ ¼ 0.65� 0.02, the
second relaxation step of FðΔtÞ decreases as Teff increases,
showing a monotonic response to activity. By contrast, at
ϕ ¼ 0.72� 0.02 the response is nonmonotonic. As we
introduce a small amount of activity, the plateau gets longer
than the passive case. This surprisingly indicates that the
system is less mobile when each particle is weakly self-
propelled. However, when we increase further the activity,
the plateau shortens again (Teff=T0 ¼ 1.7) and finally
disappears at high activity levels (Teff=T0 ¼ 3.0 and
4.0), resulting in decays faster than the passive case.
We call this nonmonotonic behavior of the decay of

FðΔtÞ with Teff a “back and forth” behavior. The back
behavior is when the system relaxes slower than the passive
case, whereas in the forth regime the relaxation is enhanced

(a)

(b)

(c)

FIG. 1. (a) Experimental image of the sediment showing the
slicing to get access to different densities. The glass transition
density of the passive case is ϕg ≈ 0.67. (b),(c) Relaxation
function FðΔtÞ for various activity levels at fixed densities ϕ ¼
0.65� 0.02 and 0.72� 0.02, respectively. Horizontal line at 0.5
shows the definition of the relaxation time τ. The dotted curve in
(c) is a stretched exponential fit.
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by activity. We also observe a similar nonmonotonic
behavior in the percentage of broken bonds (see
Supplemental Material, Fig. S5 [29]), showing that not
only absolute positions but also structure rearrangements
are responding in a nonmonotonic way. The “forth”
behavior seems rather straightforward: it happens when a
particle has enough propulsion force to push its neighbors
and move inside the dense phase. However the “back”
behavior is less intuitive and more intriguing. In the
following, we will try to understand in which conditions
the mobility of the system does depend nonmonotonically
on the activity level.
We define the relaxation time τ when half of the particles

have already moved, i.e., FðτÞ ¼ 0.5. When F does not
reach 0.5 but significantly decays from the plateau, the
relaxation time can be estimated by extrapolation [see
Teff=T0 ¼ 1.4 in Fig. 1(c)].
Figure 2(a) shows how τ depends on density for various

activities. In the passive case (black circles) τ rises steeply
with ϕ, following a Vogel-Fulcher-like dependence (solid
line) until ϕ ≈ 0.67. Beyond, we observe a saturation of τ,
typical of nonergodic glass made of soft particles [37]. In

Supplemental Material, Fig. S4 [29], we confirm that the
relaxation in this regime is waiting-time dependent, symp-
tomatic of the aging of a nonergodic system. For nonzero
activities, the rise of τ follows the same dependence in ϕ,
shifted towards higher and higher densities (see companion
article [28]). We take the first point that deviates from the fit
as the operational glass transition packing fraction ϕgðTeffÞ.
We observe that ϕg increases monotonically with activity,
which is consistent with theoretical expectations for glassy
systems with an additional active force at constant persist-
ence time and increasing effective temperature [19–21].
In general for passive soft particles, the saturation value

for τ only depends on the relaxation time in the dilute
limit [37]. By contrast, here we observe a nonmonotonic
dependence of the saturation value on Teff=T0. In our
lowest nonzero activity (Teff=T0 ¼ 1.4, light blue trian-
gles), FðΔtÞ does not decay within our experimental time
for all ϕ > 0.70. It implies relaxation times at least an order
of magnitude above the saturated τ in the passive case.
Consistently, the last four values of τ (open triangles) are
obtained by the extrapolations of F. At our second activity
(Teff=T0 ¼ 1.7, violet squares), we are able to measure a
saturated relaxation time about twice longer than in the
passive case, that is a decreasewith respect to Teff=T0 ¼ 1.4.
Finally, for higher activities (Teff=T0 ¼ 3.0, purple dia-
monds and 4.0, pink down triangles), the relaxation time
never reaches values beyond the passive case and no
saturation is observed within accessible densities.
In Fig. 2(b) we map the value of relaxation times on the

ðϕ; Teff=T0Þ phase diagram. This representation confirms
that the glass transition shifts monotonically toward higher
densities with increasing activity. The forth behavior comes
from the crossing of glass transition line to the ergodic
phase. The back behavior is observed only when going from
zero to nonzero effective temperature in an already non-
ergodic state. We stress that this nonmonotonic behavior
could not be traced by a simple path in the phase diagram.
In Fig. 2(b), we draw two vertical lines corresponding to

the two densities in Figs. 1(b) and 1(c). We then follow both
lines starting from Teff=T0 ¼ 1 and illustrate the resulting τ
in Fig. 3. At ϕ ¼ 0.65 (blue line, triangles), the original
passive system is an ergodic supercooled liquid. We
observe a monotonic decrease of τ with increasing Teff .
By contrast, when starting from a passive state that is
nonergodic at ϕ ¼ 0.72 (red line, circles), we observe the
nonmonotonic behavior that translates the rise and fall of
the saturation level of the relaxation time. τ increases at
low levels of activity and then decreases as the activity
increases further. This exemplifies the difference between
the respective responses of originally ergodic and non-
ergodic systems.
We have thus confirmed that the addition of self-

propulsion onto a nonergodic glass actually hinders its
relaxation. In the following, we explain by a scaling
argument how a glass of weakly active Brownian particles

(a)

(b)

FIG. 2. (a) Density dependence of relaxation time τ at various
activities. For Teff=T0 ¼ 1.4, τ is longer than the maximum lag
time at densities higher than 0.70. Open triangles are obtained by
extrapolation of FðΔtÞ. Transparent areas around curves show
uncertainties that come mostly from the uncertainty of area
density (�0.02) below ϕg or the standard deviation of τ from
different sampling above ϕg. The solid line is the fit τ ∝
exp fA=½ðϕ�=ϕÞ − 1�g for Teff=T0 ¼ 1.0, where A ≈ 0.19, and
ϕ�ðTeffÞ ¼ 0.69. (b) Dependence on both density and activity of
τ, obtained directly from FðτÞ ¼ 0.5 (cross symbols), by extrapo-
lation of FðΔtÞ (plus symbols). The solid curve is a guide for the
eye materializing the glass transition line. Two vertical dashed
lines at ϕ ¼ 0.65 (blue) and ϕ ¼ 0.72 (red) correspond to the
densities in Figs. 1(b) and 1(c).
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can relax slower than a glass of passive Brownian particles,
and why the transition between the two behaviors is so
sudden.
In general, there are two relaxation mechanisms in any

dense systems: (i) isotropic cooperative motion that
involves diffuse broken bonds and (ii) collective directed
motion that involves no broken bonds inside the correlated
region, but at domain boundaries. We know that a passive
glass relaxes only by the first mechanism [1]. When self-
propulsion is introduced, particle motion acquires persist-
ence and the second mechanism is made possible by the
particle directed motion. At high enough activities, collec-
tive motion is dominating: relative positions relax only at
very long times (see Supplemental Material, Fig. S5 [29])
but absolute positions relax faster than in the passive case
[Fig. 1(c)]. This effect is quantified in the companion article
[28] within a polycrystal which display the same phenom-
enology. What is not obvious is the drop of effectiveness of
cooperative movement at the very first nonzero activities.
For cooperative rearrangements to occur, an energy

barrier of height E needs to be crossed; thus the relaxa-
tion time is expressed in an Arrhenius form as τ ¼
f−1 exp ð−E=kBTeffÞ. Here, we suppose that in the limit
where Teff is close to T0 the extra energy provided by self-
propulsion is not altering significantly the argument of the
exponential. However, the attempt frequency f might be
altered by the process of space exploration. Below, we
replace the many particle problem by the simpler problem
of a single particle that explores a cage of size a ¼ 0.3σ0. f
is then the frequency at which the test particle is coming
close to the lowest barrier in the cage.
A Brownian particle explores its cage by translational

diffusion in a time τBcage ¼ μa2=ð4kBT0Þ ≈ 0.1τR. Recent
simulations of glassy active particles consider only a self-
propulsion force, without translational diffusion [19–21].
The persistent random walk of such a particle can be
characterized by the magnitude of this force FP and its
persistence time, here τR=2 [23,33]. Since the cage size is
shorter than the persistent length, the elementary time of

cage exploration is the persistence time, τPcage ¼ τR=2. It
implies that τPcage=τBcage¼ð8=3ÞðRH=aÞ2. This ratio depends
only on the softness of the potential and is about 5 in our
case. A non-Brownian self-propelled particle explores its
cage 5 times slower than a Brownian particle.
Experimentally, our particles are submitted to both

translational Brownian motion and propulsion forces.
For times shorter than the persistence time, a particle
thus undergoes random motion biased in the propulsion
direction. This situation is analogous to the sedimentation-
diffusion problem [31], replacing the weight by the pro-
pulsion force. Along the propulsion direction, the particle
probability density follows an exponential law of character-
istic length λP ≡ kBT0=FP, analogous to a sedimentation
length. From Eq. (1) we get the relevant Peclet number for
cage exploration:

Pe≡ a
λP

¼ 3ffiffiffi
2

p 0.3σ0
RH

�
Teff

T0

− 1

�
1=2

: ð2Þ

The propulsion force dominates the cage exploration
for Pe > 1, that occurs above the effective temperature
T�
eff=T0 ¼ 1þ ð2=9ÞðRH=0.3σ0Þ2 ≈ 1.45, that corresponds

to the lowest activity we can achieve experimentally.
Therefore, even at our lowest nonzero activity, diffusion
is facing an uphill battle to explore the cage in the direction
against propulsion. There is thus a practical discontinuity
between our passive case, where the cage is explored by
translational Brownian motion, and our first active case
ruled by the physics of self-propelled particles. Between
these two cases, the attempt frequency to cross energy
barriers in the glass phase is typically reduced by a factor
of 5.
To summarize, we have exhibited a dramatic change in

the response of dense assemblies of colloids to low levels of
self-propulsion at the glass transition. While the system is
ergodic, the relaxation time decreases monotonically with
activity. In the nonergodic glassy state, the relaxation time
unexpectedly increases in the very first nonzero activity
and then decreases at high enough activity for collective
motions to kick in. We attribute the observed slowdown to a
drop in efficiency of cooperative relaxation due to the onset
of directed motion and name this phenomenon “deadlock
from the emergence of active directionality (DEAD).” The
magnitude of the slowdown is larger than the factor of 5
found by our scaling argument taking into account space
exploration of a single particle. We conjecture that the
many-body nature of cooperative motion has to be taken
into account to reach quantitative agreement. A reduction in
attempt frequency at the single-particle scale may translate
nonlinearly into a larger relaxation time at the level of the
cooperative region. Unfortunately, recent extensions of
glass theories to active matter rely explicitly on effective
single-particle models [21]. Furthermore, we have to take
into account that the number of degrees of freedom per

FIG. 3. Contrast of activity dependence of τ between both sides
of the glass transition. For ϕ ¼ 0.72 (red circles), the first three
points are glassy, nonergodic and we observe a nonmonotonic
dependence on activity, but not at ϕ ¼ 0.65 (blue triangles) where
all points are ergodic. The horizontal dashed line shows τ in the
passive case.
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particle jumps from 2 in the Brownian case, to 3 in the self-
propelled case where orientation become important. In
other words, directional motion adds N degrees of orienta-
tional freedom that increase even more the complexity
of the landscape and slows down relaxation. Our argument
on propulsion-induced confinement shows that the switch
from isotropic to oriented system is effective at very low
activities. Finally, the existence of deadlock from the
emergence of active directionality opens the door to
actively arrested materials where dynamics are even slower
than in their passive counterpart.
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