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We present a new optomechanical device where the motion of a micromechanical membrane couples to a
microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize
ultrastrong parametric coupling, where the coupling not only exceeds the dissipation in the system but also
rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency
splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited
by the fundamental parametric instability. The coupling also exceeds the mechanical thermal decoherence
rate, enabling new applications in ultrafast quantum state transfer and entanglement generation.
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The physics of coupled oscillators is used to understand
a wide array of phenomena, from the microscopic vibra-
tions of atoms and molecules to the interplay of planets and
their moons. Coupling strengths can be grouped into
different regimes with qualitatively different behavior. In
particular, the regimes of weak and strong coupling are
distinguished by whether the coupling between two oscil-
lators exceeds their dissipation. In the strong-coupling
regime, the eigenfrequencies of the combined system split
into normal modes where the energy swaps back and forth
between the individual oscillators. For low-loss systems,
this energy exchange can be fast compared to the lifetimes
of the individual modes, while still remaining slow com-
pared to their periods. The strong-coupling regime has
become an essential tool in engineered quantum systems
because it can allow the subsystems to exchange their
quantum information before it is lost due to decoherence
[1]. As quantum devices continue to be engineered with
larger coupling rates, a new regime known as ultrastrong
coupling has become increasingly relevant. This regime
occurs once the coupling becomes so large as to rival a bare
resonance frequency, resulting in new quantum effects,
including multimode entanglement and nontrivial ground
states. While ultrastrong coupling has been demonstrated in
a handful of quantum systems, including superconducting
qubits and semiconducting quantum wells, a complete
understanding of its physics and applications continues
to emerge as a variety of new physical systems encounter
this regime [2,3]. Here, we extend the experimental study
of ultrastrong coupling to parametrically coupled quantum
harmonic oscillators in a cavity optomechanical system.
Cavity optomechanics is an area of engineered quantum

systems in which a mechanical resonator and an electro-
magnetic mode form a coupled-oscillator system [4].

Although the intrinsic coupling between single photons
and phonons is typically small, cavity optomechanical
systems allow an enhancement of the coupling proportional
to the amplitude of a coherent cavity drive. This parametric
enhancement has enabled demonstrations of strong coupling
both at ambient temperatures [5,6] and in cryogenic quan-
tum-coherent regimes [7–10]. In practice, as the intensity
of the coherent drive becomes large, it can induce other
undesirable effects, including heating and cavity nonlinear-
ity, limiting the final parametric coupling. Operating deep
within the quantum-coherent ultrastrong-coupling regime
therefore requires a dramatic increase in either the single-
photon optomechanical coupling or the cavity’s power
handling capability. Specifically, in the microwave domain,
one prominent optomechanical platform is a lumped element
superconducting circuit formed from a mechanically com-
pliant capacitor shunted by a thin-film inductor. While this
architecture has enabled strong coupling [7], ground-state
cooling [11], and entanglement [12], the coupling has
remained well below the onset of ultrastrong-coupling
effects, limited by unwanted nonlinearity of the supercon-
ducting inductor due to its kinetic inductance [13,14].
In this Letter, we introduce a new optomechanical archi-

tecture that mitigates the nonideality of previous designs,
allowing us to reach ultrastrong coupling and the funda-
mental stability limit of the optomechanical interaction [15].
Our device consists of a microfabricated vacuum-gap
capacitor embedded in a three-dimensional superconducting
microwave cavity, analogous to recent work in circuit
quantum electrodynamics [16] and similar to other opto-
mechanical demonstrations [9,17–19]. Our device takes
advantage of the superior power handling of bulk cavity
resonators compared to thin-film inductors owing to their
larger surface areas and correspondingly smaller current
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densities [20]. In general, the drawback of using a cavity
resonator is a larger parasitic capacitance that would dilute
the optomechanical coupling. Crucially, through careful
microwave design and simulation, wemaintain the relatively
large single-photon coupling of lumped element circuits [7].
As a result, we achieve ultrastrong parametric coupling by
applying microwave drives with 100 times larger power,
ultimately limited by the instability inherent in the opto-
mechanical Hamiltonian. Because of the low temperature of
operation, the quantum decoherence rates are kept suffi-
ciently small to enable new regimes of entanglement [15,21],
nonlinear quantum optomechanics [22], and ultrafast quan-
tum state transfer [12,23,24].
In a cavity optomechanical system, the frequency ωc of

an electromagnetic resonance depends on the position x̂ of
a harmonic oscillator [4]. The interaction Hamiltonian is
Ĥint ¼ ℏg0n̂ x̂ =xzp, where g0 is the single-photon coupling,
n̂ is the number operator for microwave photons, and ℏ is
the reduced Planck constant. xzp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2mΩ
p

is the
mechanical zero-point fluctuation amplitude, where m
and Ω are the effective mass and the resonance frequency
of the mechanical mode. Dissipation is characterized by
damping rates κ for the electrical mode and Γ for the
mechanical mode, with Γ ≪ κ. Even if g0 is small, the
coupling can be parametrically enhanced by driving
the electricalmode to a coherent state ofmean photonnumber
nd at frequency ωd. Defining â as the annihilation operator
for fluctuations around the driven state, we can approximate
the interaction Hamiltonian as Ĥint ¼ ℏgðâþ â†Þx̂=xzp,
where g ¼ g0

ffiffiffiffiffi

nd
p

is the parametrically enhanced coupling,
leading to a set of linear equations ofmotion for âðtÞ and x̂ðtÞ.
Just as two passively coupled oscillators interact most
strongly when resonant with each other, parametric coupling
creates an effective resonance condition when the system is
driven at the difference frequency (Δ≡ ωd − ωc ¼ −Ω) in
the resolved sideband regime (κ ≪ Ω). These conditions
optimize the coherent exchange of energy between the
mechanical and electromagnetic modes.
As the driven coupling g is increased from its single-

photon value, we encounter several distinct regimes of
coupling. When the cooperativity C ¼ 4g2=κΓ reaches one,
the optical damping of the mechanical mode begins to
dominate over its intrinsic dissipation. As g increases
further, the effective mechanical linewidth increases until
it reaches the cavity dissipation when g ¼ κ=4. Above this
threshold, the system enters the strong-coupling regime,
where the cavity and mechanical modes hybridize, with
the mechanical resonance frequency splitting into two
solutions, which for g ≪ Ω are given by

Ω� ≃Ω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 − κ2=16
q

: ð1Þ

This leads to the splitting Ωs ¼ Ωþ −Ω− ≃ 2g when the
coupling overwhelms the cavity dissipation. In this regime

of strong coupling, the two resonators exchange energy at a
rate Ωs, faster than any dissipation in the system.
As the splitting Ωs approaches the mechanical frequency

Ω, however, terms of order g=Ω cannot be ignored,
requiring the use of the exact eigenfrequency spectrum
(see Supplemental Material [25])

Ω� ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 −
κ2

16
� 2Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 −
κ2

16

r

s

: ð2Þ

The discrepancy between (1) and (2) is a measurable metric
to distinguish strong and ultrastrong parametric coupling.
In the resolved sideband ultrastrong-coupling regime
(κ ≪ 2g < Ω), Eq. (2) becomes Ω� ≃Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2g=Ω
p

,
showing that the splitting exceeds 2g. When the coupling
reaches Ω=2 with a splitting of Ωs ¼

ffiffiffi

2
p

Ω, the lower
eigenfrequency goes to zero, and the effective mode
dissipation becomes negative [25]; here, the system
becomes parametrically unstable, with mode amplitudes
exponentially growing in time.
These regimes are shown in Fig. 1 as a function of

parametric coupling and sideband resolution Ω=κ. The
shaded region of ultrastrong coupling corresponds to
Ω=5 < Ωs, roughly where terms of order g=Ω become
relevant while still satisfying the condition for strong
coupling. As Ωs characterizes the energy exchange rate,
the instability sets a fundamental limit for both optome-
chanical coupling and coherent transfer of information
between the resonators in the steady state.
For quantum applications, the coupling should be

compared not only to dissipation but also to decoherence

FIG. 1. Parameter space diagram showing four regimes of
parametric optomechanical coupling g as a function of cavity
dissipation κ and mechanical frequency Ω. For a parametric drive
at Δ ¼ −Ω, strong coupling coincides with the normal-mode
splitting condition κ < 4g. Ultrastrong coupling arises when g
further increases to a significant fraction of Ω until reaching the
limit for stability at 2g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 þ κ2=4
p

. Labeled points denote
previous optomechanical experiments in the strong-coupling
regime: (A) optical Fabry-Pérot cavity [5], (B) lumped element
microwave circuit [7], (C) toroidal optical microcavity [8], and
(D) microwave loop-gap cavity [9]. The star indicates the highest
coupling achieved in this Letter.
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in the system. In particular, the mechanical thermal
decoherence nthΓ can be much larger than the intrinsic
dissipation Γ, where nth is the occupancy of the mechanical
thermal environment. Ideally, the quantum cooperativity
Cq ¼ 4g2=κnthΓ exceeds one before the onset of strong
coupling, ensuring that the hybridized system is quantum
coherent. In the following, we present an optomechanical
device that achieves the hierarchy of rates desired for
quantum-coherent ultrastrong coupling: nthΓ≪κ=2≪2g≲
Ω≪ωc.
Our device is shown in Fig. 2. A microwave cavity

resonator with inner dimensions 19 × 4 × 17 mm milled
from bulk aluminum defines the electrical resonance of the
system [26]. We focus on the fundamental TE101 micro-
wave mode, whose electric field is maximal at the center of
the cavity, where we place a sapphire chip containing a
microfabricated 20 μm-diameter aluminum vacuum-gap
capacitor [23]. The suspended top plate of the capacitor
forms the mechanical resonator of the system. Reducing the
parasitic capacitance of the cavity and thereby maximizing
the optomechanical coupling requires a galvanic connection
between the microfabricated capacitor and the cavity walls.
To achieve this, we use aluminum bond wires to connect the

cavity faces to lithographically patterned pads, which then
connect to the capacitor through thin-film aluminum wires.
The vacuum-gap capacitor and sapphire substrate load

the cavity resonance, pulling its frequency from around
12 GHz down to ωc=2π ≈ 6.506 GHz. Two cavity ports
with adjustable coupling pins allow signals to couple in and
out to coaxial cables. We adjust the length of the pins
at room temperature so the two ports contribute asymmet-
rically to the total dissipation κ ¼ κ1 þ κ2 þ κi, where
κ1=2π ≈ 1.1 MHz and κ2=2π ≈ 25 kHz are the port cou-
pling rates. The internal dissipation rate κi=2π of the cavity
mode ranges from ∼30 to ∼140 kHz depending on the
circulating power [27]. We place the device in a cryostat
with a base temperature of 16 mK and probe the system
with microwave signals applied near the cavity resonance
frequency. Our setup allows us to measure all four elements
of the scattering matrix for a broad range of parametric
coupling parameters. With a weak cavity drive, we char-
acterize the fundamental vibrational mode of the capacitor
plate by its resonance frequency Ω=2π ≈ 9.696 MHz and
its intrinsic damping rate Γ=2π ¼ ð31� 1Þ Hz, where the
uncertainty represents the standard error of the mean. By
varying the cryostat temperature and measuring mechanical
thermal noise, we determine the single-photon opto-
mechanical coupling rate g0=2π ¼ ð167� 2Þ Hz [11]. At
base temperature, the mechanical mode equilibrates to
(35� 3) mK, corresponding to a thermal phonon occupancy
nth ¼ 76� 6.
To probe the response of the coupled system, we

measure the transmission of a weak microwave probe
through the cavity in the presence of a parametric drive
[7,28,29]. In Fig. 3, we plot the transmission of the probe
for a range of drive powers applied below the cavity
resonance, with the drive frequency indicated as a red
vertical line. We coherently cancel the drive after it leaves
the cavity, allowing us to measure the transmission of a
weak probe without saturating our microwave measure-
ment (see Supplemental Material [25]). We adjust the drive
frequency as we increase drive power to maintain the
condition Δ ¼ −Ω in the presence of two dominant non-
linear effects. Namely, we measure the pure optomechan-
ical Kerr shift, −2g20=Ω ¼ ð−5.8� 0.1Þ mHz=photon, and
we attribute the remaining shift to the residual nonlinear
kinetic inductance of the superconducting film [13,14],
approximately −4 mHz=photon, at our highest powers,
roughly an order of magnitude smaller than in previous
lumped element designs.
At low drive power [Fig. 3(a)], we measure the bare

cavity resonance. As the drive power increases [Fig. 3(b)],
optomechanical interference appears in the cavity response
over a bandwidth∼4g2=κ. At large enough power [Fig. 3(c)],
the damped mechanical width reaches κ=2, after which the
response splits into normal modes, marking the strong-
coupling regime. Additionally, we begin to resolve the next
four vibrational modes of the membrane [sharp features in
Figs. 3(d) and 3(e)], which coupleweakly to the cavitymode.

FIG. 2. Device schematic. (a) A cavity, milled from two
aluminum blocks, supports a microwave resonance near
12 GHz. Microwave signals couple in and out of the cavity
through two asymmetrically coupled ports. (b) An aluminum
mechanically compliant capacitor patterned on a sapphire sub-
strate is galvanically connected to the cavity walls through
superconducting wire bonds, loading the fundamental cavity
resonance frequency down to 6.5 GHz. (c) A micrograph image
shows the capacitor, which has a fundamental mechanical
resonance at 9.7 MHz and a vacuum gap of approximately 30 nm.

PHYSICAL REVIEW LETTERS 123, 247701 (2019)

247701-3



At the highest power [Fig. 3(e)], the response acquires
several features indicative of ultrastrong coupling. In addi-
tion to the splitting of the fundamental resonance becoming
of orderΩ, the dynamics below the drive frequency become
significant and easily observable. Lastly, the transmission at
the drive frequency begins to increase, signifying a nonlinear
relationship between input power and driven photon number
in the cavity.
We fit the complex data to multimode optomechanical

theory (see Supplemental Material [25]), shown as a black
line plotted over the data. The quantitative agreement
between data and theory allows us to extract all relevant
system parameters as a function of drive power. These
parameters are shown in Fig. 4(a) from weak to ultrastrong
parametric coupling. For few drive photons (nd ≲ 102), the
bare mode properties are measured. As the drive power
increases within the regime of weak coupling (nd ≲ 106),
the mechanical mode is damped and cooled, passing
through C ¼ 1 and entering the quantum regime Cq > 1,
where the occupancy is reduced below one quantum.
Normal-mode splitting occurs at nd ≈ 3 × 106, where
4g ¼ κ, marking the beginning of strong coupling. Above
nd ≈ 2 × 108, the splitting starts to deviate from 2g as the

coupling becomes ultrastrong. The threshold for parametric
oscillation occurs at nd ≈ 8.4 × 108, above which no steady-
state solution exists. We measure well into the regime where
Ω− < 2g < Ωs; that is, the energy swapping rate exceeds 2g
as well as the lower eigenfrequency itself.
In Fig. 4(b), the measured mechanical eigenfrequencies

are plotted vs the optomechanical coupling. The black line
shows the strong-coupling approximation (1), while the full
solution (2) is shown in blue. The discrepancy between the
two indicates ultrastrong coupling. At the highest power,
the splitting between the two modes exceeds the frequency
of the lower mode, reaching 88% of the bare mechanical
frequency.
Our measurements of the driven cavity response allow

us to reconstruct the mechanical susceptibility χmðωÞ,

FIG. 3. Measured and calibrated cavity transmission from port
1 to port 2 for varied drive strengths nd from weak coupling [(a),
(b)] through strong coupling [(c),(d)] and up to ultrastrong
coupling (e). The data (blue) are fit to theory (black) containing
the first five mechanical modes. The vertical red line indicates the
frequency of the applied microwave drive, adjusted to maintain
Δ ¼ −Ω. The structure below the drive frequency at the highest
powers directly shows the importance of counterrotating terms in
the ultrastrong-coupling regime.

(a)

(b)

FIG. 4. (a) Measured system rates as a function of drive
strength. In the weak-coupling regime, the optical damping first
exceeds the mechanical dissipation (C ¼ 1) and then exceeds
the thermal decoherence (Cq ¼ 1). Once 2g reaches κ=2, the
eigenmodes split, indicating the onset of strong coupling.
Eventually, ultrastrong-coupling corrections become important
before the system approaches a parametric instability at 2g ¼ Ω.
(b) Mechanical eigenfrequencies as a function of the optome-
chanical coupling. In the ultrastrong-coupling regime, the
splitting Ωs ¼ Ωþ − Ω− exceeds the linear strong-coupling
approximation Ωs ≃ 2g (black), reaching a maximal value Ωs ≈
0.88Ω.
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including the first four higher-order vibrational modes
(Fig. 5). The original fundamental mode of linewidth Γ
splits into two broad peaks with approximate widths κ=2,
each representing a normal mode of the joint cavity–
mechanical system. At our highest cooperativity of C≈
1.6 × 106, we achieve a maximal splitting of Ωs=2π ≈
8.5 MHz. Here, the mechanical state is exchanged with
the cavity in a characteristic time π=Ωs ≈ 60 ns, faster than
the mechanical oscillation period 2π=Ω ≈ 100 ns.
In conclusion, we have introduced a novel optomechan-

ical architecture and experimentally characterized it in
the ultrastrong-coupling regime. Looking forward, ultra-
strongly coupled linear modes are predicted to have
interesting ground-state properties [30–33]. In this regime,
quantum correlations induce squeezing and mechanical-
cavity entanglement [21]. Studying the noise properties
here would allow us to observe these effects for the first
time and assess how these correlations could be exploited
for quantum-enhanced sensing [34–36]. Furthermore,
while the instability precludes steady-state measurements
when the swapping rate exceeds the mechanical frequency,
pulsed measurements would allow characterization beyond
this limit into the deep strong-coupling regime [2,3],
enabling new regimes of quantum state transfer [24,37],
entanglement [12], topologically protected operations [38],
and projective measurements [39]. Finally, theoretical
proposals have suggested using ultrastrong coupling
to enhance the weak nonlinear terms of the optomechan-
ical Hamiltonian [22] allowing for nonlinear quantum
optomechanics.
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