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Recent nuclear magnetic resonance studies [A. Pustogow et al., Nature 574, 72 (2019)] have challenged
the prevalent chiral triplet pairing scenario proposed for Sr2RuO4. To provide guidance from microscopic
theory as to which other pair states might be compatible with the new data, we perform a detailed
theoretical study of spin fluctuation mediated pairing for this compound. We map out the phase diagram as
a function of spin-orbit coupling, interaction parameters, and band structure properties over physically
reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data
information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase
diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting
state, which is either helical or chiral depending on the proximity of the γ band to the van Hove points. A
surprising near degeneracy of the nodal s0 and dx2−y2 wave solutions leads to the possibility of a near-nodal
time-reversal symmetry broken s0 þ idx2−y2 pair state. Predictions for the temperature dependence of the
Knight shift for fields in and out of plane are presented for all states.
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Superconductivity in Sr2RuO4 remains largely a mystery
despite the relative simplicity of the material as compared
to the high-Tc cuprates and almost twenty-five years of
intense research efforts [1]. Until recently, the dominant
opinion was that Sr2RuO4 represents a unique example of a
chiral triplet superconducting state, supported by the
presumed proximity of layered Sr2RuO4 to ferromagnetism
[2], observed in the perovskite “parent” material SrRuO3,
as well as temperature independent Knight shift data across
Tc, measured on both Ru [3,4] and O [5,6] nuclei. It was
soon discovered, however, that the leading magnetic
instability in Sr2RuO4 occurs in an antiferromagnetic,
and not ferromagnetic channel [7–9], although later weak
low q fluctuations were also observed [10,11]. In this case,
the usual spin-fluctuation exchange pairing mechanism
[12] would be expected to lead to even parity spin-singlet
solutions rather than odd parity spin-triplet states. The
situation is further complicated by the multiorbital nature of
the electronic states [7,13], as well as sizeable spin-orbit
coupling [14–18], resulting in significant magnetic aniso-
tropy of the spin fluctuations in this material [10,19,20],
which complicate theoretical analysis. Furthermore, as the
main belief was that Sr2RuO4 supported a spin-triplet
superconducting state, most theories focused on such
solutions. For a review of earlier works see, e.g.,
Ref. [1], and also more recent works, Refs. [21–26].
Very recently, the Knight shift in an in-plane magnetic

field was remeasured by a different group and found to drop

below Tc, severely challenging the prevalent chiral triplet
pair state proposed for Sr2RuO4 [27]. Previous results were
interpreted as a result of heating of the sample during the
application of high amplitude radio frequency pulses [27].
This NMR result has been recently confirmed by another
group [28], and therefore the problem of superconductivity
in Sr2RuO4 is ripe for reexamination.
In this Letter we present a detailed theoretical study of

spin-fluctuation mediated pairing relevant for Sr2RuO4

using a realistic spin-orbit coupling (SOC), which correctly
reproduces the magnetic anisotropy found in this system,
and sizeable Hund’s coupling strength [29]. In particular,
we investigate the leading superconducting instabilities in a
framework where SOC is included both in the electronic
structure and the pairing interaction. Throughout, we relate
our results to neutron scattering data, and additionally
discuss the Knight shift and the existence of nodal gaps in
the DOS. Finally, we address the role of electron inter-
actions beyond the random phase approximation (RPA) on
the preferred Cooper pairing.
Atomic spin-orbit coupling, parametrized here by

HSOC ¼ λsocL · S, does not break time-reversal symmetry,
and due to Kramer’s theorem all energies thus remain
doubly degenerate. Degenerate eigenvectors are labeled by
pseudospin σ ¼ þ=− and the relation to electronic anni-
hilation or creation operators cμ;sðkÞ=c†μ;sðkÞ of orbital
character μ and spin s is given by Ψðk;þÞ ¼ ½cxz↑ðkÞ;
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cyz;↑ðkÞ; cxy;↓ðkÞ�, and Ψðk;−Þ ¼ ½cxz;↓ðkÞ; cyz;↓ðkÞ;
cxy;↑ðkÞ�. In this basis the noninteracting Hamiltonian
can be written in block-diagonal form Ĥ ¼P

σ Ψ†ðk; σÞðH0 þHSOCÞΨðk; σÞ with the matrices H0

and HSOC given by

H0 ¼

0

BB@

ξxzðkÞ gðkÞ 0

gðkÞ ξyzðkÞ 0

0 0 ξxyðkÞ

1

CCA; ð1Þ

HSOC ¼ 1

2

0

B@

0 −iσλsoc iλsoc
iσλsoc 0 −σλsoc
−iλsoc −σλsoc 0

1

CA; ð2Þ

with σ ¼ þð−Þ for pseudospin up (down) block. The
electronic dispersions are given by ξxzðkÞ ¼ −2t1 cos kx−
2t2 cos ky − μ, ξyzðkÞ ¼ −2t2 cos kx − 2t1 cos ky − μ, and
ξxyðkÞ ¼ −2t3ðcos kx þ cos kyÞ − 4t4 cos kx cos ky−
2t5ðcos 2kx þ cos 2kyÞ − μxy. As in Ref. [20] we para-
metrize the band by ft1; t2; t3; t4; t5g ¼ f88; 9; 80;
40; 5g meV with gðkÞ ¼ 0 and the chemical potential of
the xz, yz bands μ ¼ 109 meV. For the effect of finite gðkÞ,
see Supplemental Material [30] and Ref. [32]. Below, μxy is
allowed to vary slightly from μ to map out the effect of a
different crystal field, motivated by a sensitivity of the
superconducting instability to the proximity of the xy
orbital Fermi surface states to the van Hove saddle points.
We restrict ourselves to a purely two-dimensional elec-
tronic model, given the strong electronic anisotropy of
Sr2RuO4. Although the third dimension may play a role,
the main physics is expected to occur in the RuO2 planes.
We derive the effective electron-electron interaction in

the Cooper channel from the multiorbital Hubbard
Hamiltonian which includes intra- and interorbital
Coulomb interactions and Hund’s coupling terms.
Summation of all ladder and bubble diagrams gives the
effective interaction expressed in terms of the bare inter-
action parameters U, U0, J, J0 and the RPA spin suscep-
tibilities, for more details see Supplemental Material [30].
This procedure results in the interaction Hamiltonian

Ĥint ¼
1

2

X

k;k0fμ̃g
½Vðk;k0Þ�μ̃1;μ̃2μ̃3;μ̃4

c†kμ̃1c
†
−kμ̃3c−k0μ̃2ck0μ̃4 ; ð3Þ

with the pairing interaction given by

½Vðk;k0Þ�μ̃1;μ̃2μ̃3;μ̃4
¼ ½U�μ̃1;μ̃2μ̃3;μ̃4

þ
�
U

1

1 − χ0U
χ0U

�
μ̃1μ̃2

μ̃3μ̃4

ðkþ k0Þ

−
�
U

1

1 − χ0U
χ0U

�
μ̃1μ̃4

μ̃3μ̃2

ðk − k0Þ: ð4Þ

The label μ̃ ¼ ðμ; sÞ is a joint index for orbital and
electronic spin and χ0 ¼ ½χ0�μ̃1;μ̃2μ̃3;μ̃4

ðq; iωn ¼ 0Þ denotes
the real part of the static generalized multiorbital spin

susceptibility in the presence of SOC. The interaction
Hamiltonian as stated in Eq. (3) is projected to band and
pseudospin space to obtain the final form:

Ĥint ¼
X

n;n0;k;k0

X

l;l0
Ψ̄lðn;kÞ

1

2
Γl;l0 ðn;k; n0;k0ÞΨl0 ðn0;k0Þ:

ð5Þ
Here n, n0 are band indices, and the pseudospin informa-
tion is carried by the l, l0 indices with the fermion
bilinear operator, Ψlðn;kÞ, defined in the Supplemental
Material [30].
The leading and subleading superconducting instabilities

are determined from the linearized gap equation

−
Z

FS
dk0

f
1

jvðk0
fÞj

Γl;l0 ðkf;k0
fÞΔl0 ðk0

fÞ ¼ λΔlðkfÞ; ð6Þ

where Δlðn;kÞ ¼ 1
2

P
n0;k0;l0 Γl;l0 ðn;k; n0;k0ÞhΨl0 ðn0;k0Þi.

The integration in Eq. (6) includes momenta at the
Fermi surface of the three bands with n uniquely defined
by kf and vðkfÞ is the Fermi velocity at kf. The
eigenvector ΔlðkfÞ corresponding to the largest eigenvalue
λ displays the structure of the leading superconducting
instability.
The solutions to Eq. (6) are classified according to the

tetragonal lattice symmetry restricted to two dimensions.
The even parity statesΔ0ðkÞ have four possible symmetries
fs; dx2−y2 ; dxy; gg while odd parity states fall either into one
of the four possible superpositions of ΔxðkÞ and ΔyðkÞ
(denoted helical states) or a chiral solution ΔzðkÞ, which is
doubly degenerate. Here, fΔxðkÞ;ΔyðkÞ;ΔzðkÞg denote
the components of the vector dðkÞ [33] in the pseudospin
space. The pseudospins are fixed in the plane perpendicular
to the d vector. In our approach, the x and y components are
degenerate, due to a lack of hybridization between the xz
and yz orbitals. Therefore, all four helical states are
degenerate, leaving open the possibility of complex super-
positions of the type Δx þ iΔy, which are nonunitary pair
states breaking time-reversal symmetry (TRS).
In Figs. 1(a)–1(d), we show the longitudinal (zz)

component of the spin susceptibility and the leading
superconducting instabilities as a function of SOC and
Hund’s coupling J for two different values of μxy ¼ 109,
134 meV, to expose the effect of van Hove proximity.
The Fermi surface in each case is shown in the insets of
Figs. 1(b) and 1(d). The change in μxy has a strong effect on
the physical susceptibilities, as shown in Figs. 1(a) and 1(c)
where we plot χzzRPAðqÞ. For the band farthest from the van
Hove point, we observe two prominent nesting vectors,
which are approximately given by Q1 ¼ ð2π=3; 2π=3Þ and
Q3 ¼ ðπ; 2π=3Þ, see Fig. 1(a). The vector Q1 arises from
the nesting of the 1D-like xz=yz bands, see the
Supplemental Material [30], and has been extensively
reported by neutron scattering [8,10,34]. Furthermore, a
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factor two enhancement of the out-of-plane susceptibility
compared to the in-plane susceptibility has been reported at
this nesting vector [10]. Our calculations also give a spin
anisotropy at Q1 with a magnitude that depends on both
SOC, interaction parameters and the band structure, see the
Supplemental Material [30]. As shown in Fig. 1, the regime
where the spin susceptibility is dominated by Q1 and Q3

results in mainly even-parity solutions, which are both
nodal, s0 or dx2−y2. A helical odd-parity pseudospin triplet
solution is, however, favored in the regime of large SOC
and Hund’s coupling J, as seen in Fig. 1(b). We stress that
for obtaining the results in Fig. 1, it is crucial to properly
include SOC both in the band structure and in the pairing
kernel, see the Supplemental Material [30]. Experimentally,
the spin anisotropy observed by neutron scattering persists
to 300 K [10] and photoemission fitting gives a value of
λsoc ¼ 32 meV [17]. The Hund’s coupling is estimated to
be J=U ≃ 0.1 [35].
Only Fermi surfaces with a γ band very close to the van

Hove point produce a significant quasiferromagnetic signal
Q2 originating mainly from intraorbital xy nesting, see
Fig. 1(c). At large values of λsoc, chiral pseudospin triplet
superconductivity emerges as shown in Fig. 1(d). However,
when Q2 is less pronounced, in better agreement with
neutron experiments, the chiral state is entirely absent as a
leading instability. For further parameter dependence of the
leading superconducting instability, we refer to the
Supplemental Material [30].
We note that a similar spin-fluctuation based approach

was recently employed in Ref. [24], focusing on the very
weak-coupling regime and small Hund’s interaction. In this

limit, chiral or helical solutions were found, whereas even-
parity solutions dominated the regime of intermediate
coupling strengths. One of our main findings, however,
is that a helical state becomes again dominant for the larger
values of the Hund’s coupling and sizeable SOC, see
Fig. 1(b). In addition, the chiral state occurs only in
regimes where the spin fluctuations appear inconsistent
with available neutron scattering data.
The Knight shift provides a way to distinguish between

even and odd-parity solutions found in Figs. 1(b) and 1(d).
We address the Knight shift by a calculation of the uni-
form spin susceptibility in the superconducting state,
χ00ðq ¼ 0;ω ¼ 0Þ in four different gap scenarios; dx2−y2 ,
s0 þ idx2−y2 , helical and chiral superconductivity. The
proposed solution s0 þ idx2−y2 which displays time reversal
symmetry breaking is restricted to the parameter space
where s0 and dx2−y2 are degenerate.
If SOC was negligible, we would expect the Knight shift

of the even-parity superconductors to be completely sup-
pressed in all spin channels for T → 0 [36] with exponen-
tial suppression for a full gap (s wave) and linear
suppression for a nodal gap. As seen in Figs. 1(e) and
1(f), the even-parity solutions do exhibit suppression in all
spin channels, but more pronounced for the in-plane field
directions, xx=yy. The simple expectation for singlet
superconductors breaks down because a pseudospin singlet
solution contains both electronic spin singlet and triplet
character. To illustrate this point more clearly, we show in
the Supplemental Material [30] how a conventional s wave
superconductor acquires a residual Knight shift at T ¼ 0 as
an effect of SOC. The properties of helical and chiral
solutions, however, remain largely as expected from the
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FIG. 1. Longitudinal spin susceptibility χzz;0RPAðq;ω ¼ 0Þ at λsoc ¼ 35 meV and leading superconducting instability as a function of
SOC amplitude λsoc and Hund’s coupling J for μxy ¼ 109 meV (a), (b) and μxy ¼ 134 meV (c), (d). The Fermi surface with the α, β, and
γ band is shown for each case by insets with dominating orbital content displayed by colors: xy orbital is blue, xz is red, and yz is yellow.
In (b), (d) white symbols display the positions for which the Knight shifts shown in (e)–(h) were obtained. The Knight shift is given by
χ00ðq ¼ 0;ω ¼ 0Þ, and we set kBTc ¼ 0.5 meV and the maximum amplitude of the gap is Δmax ¼ 1 meV. The solid blue line is the
Knight shift for in-plane fields (xx=yy component), while the black dashed-dotted line displays the Knight shift for out-of-plane fields
(zz component). The dotted lines display the normal state Knight shift xx=yy component (blue) and zz component (black).

PHYSICAL REVIEW LETTERS 123, 247001 (2019)

247001-3



λsoc ¼ 0 case: the helical superconductor exhibits a partial
Knight shift suppression for in-plane fields and is insensi-
tive to out-of-plane fields, see Fig. 1(g). For the chiral state
shown in Fig. 1(h), the Knight shift is unaffected by in-
plane fields and suppressed by out-of-plane magnetic
fields, but full suppression is prevented by SOC [26].
Relating to the newest NMR results [27], our calcula-

tions reveal that the superconducting ground state in
Sr2RuO4 is consistent either with an even-parity pseudo-
spin singlet or a helical pseudospin triplet pair state. Future
NMR measurements for out-of-plane fields should be
able to distinguish between these cases: the helical
solution should exhibit no suppression, while the even-
parity solution should display a clear suppression. Finally,
we note that a possible nonunitary TRSB state of the type
Δx þ iΔy would display a similar Knight shift as the helical
solution.
Turning to the spectral properties of the various super-

conducting states found above, an outstanding experimen-
tal puzzle is the experimental observation of nodes (or near
nodes) in the density of states (DOS) [37–42]. For the
details of the DOS calculations we refer to the
Supplemental Material section [30]. The dx2−y2 solution
found in Fig. 1(b) has symmetry-imposed line nodes, with a
gap that rises very steeply away from the zone diagonals, as
shown in Fig. 2(a). The nodes give rise to the characteristic
V-shaped DOS at the Fermi level, as shown in Fig. 2(e).
The s0 solution, which appears to be very prominent in a
large region of phase space also exhibits nodes, see
Fig. 2(b), but in general the nodes do not coincide with
the nodes of dx2−y2 wave. However, the β pocket shows a
suppressed dx2−y2 gap in the region where the s0 solution

has nodes. Therefore, the TRSB solution of the type
s0 þ idx2−y2 will exhibit near-nodal behavior with a small
DOS close to the Fermi level, as seen in Fig. 2(f). The
helical state gives rise to a more uniform spectral gap, see
Fig. 2(c), with near-nodal behavior only at the α pockets at
the zone diagonals. Thus, in this case, we find a more
complete suppression of the DOS at the smallest energies,
see Fig. 2(g). Finally, for the chiral solution, only segments
of the Fermi surface which are predominantly of xy orbital
character, display a large gap, as can be deduced by
comparing the spectral gap of Fig. 2(d) with the orbital
character of the Fermi surface displayed in the inset of
Fig. 1(d). Parts of the Fermi surface which are of xz=yz
character exhibit almost no gap, and thus there remains a
large number of electronic states close to the Fermi surface
as evident from Fig. 2(h). We note that this appears to agree
with the findings of the recent work by Wang et al. [26],
where a chiral solution was found to have low-lying states.
The chiral state, however, appears to be ruled out by the
recent NMR results [27].
In Sr2RuO4 significant mass renormalizations have been

identified from DMFT originating from the proximity of
the van Hove singularity [43] and Hund’s coupling, driving
the effective mass of the xy orbital larger than the effective
mass of xz=yz orbitals. To investigate how this changes
the gap solutions, we apply the same approach as in
Refs. [44,45]. Thus, the bare electronic operator is modified
by ck;μ;s →

ffiffiffiffiffiffi
Zμ

p
ck;μ;s and a difference in quasiparticle

weights between the xy orbital and the xz=yz orbitals is
imposed by Zxz ¼ Zyz > Zxy. The quasiparticle weights
dress the susceptibility [44]

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Spectral gap Δk for (a) dx2−y2 (J=U ¼ 0.1), (b) nodal s0 (J=U ¼ 0.2), (c) helical (J=U ¼ 0.25) in the case of μxy ¼ 109 meV,
λsoc ¼ 35 meV and U ¼ 120 meV, see white stars in Fig. 1(b). (d) Spectral gap for the chiral solution with μxy ¼ 134 meV,
λsoc ¼ 35 meV, U ¼ 50 meV and J=U ¼ 0.25. The band character of the gap is indicated by colors: α (blue), β (yellow), and γ (red).
The band character generally corresponds directly to the orbital character, with the exception of the Fermi surface regions close to the
zone diagonals as visualized in the Fermi surface insets in Figs. 1(b) and 1(d). (e)–(h) Density of states for Δmax ¼ 1 meV. In panels (e),
(g), (h) we invoke the gap structure in (a), (c), (d) while (f) shows NμðωÞ for a TRSB superconductor constructed by the complex
superposition of the two even-parity solutions dx2−y2 and s0.
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½χ̃0�μ̃1;μ̃2μ̃3;μ̃4
→

ffiffiffiffiffiffiffi
Zμ1

p ffiffiffiffiffiffiffi
Zμ2

p ffiffiffiffiffiffiffi
Zμ3

p ffiffiffiffiffiffiffi
Zμ4

p ½χ0�μ̃1;μ̃2μ̃3;μ̃4
; ð7Þ

and the interaction Hamiltonian Eq. (3). In Fig. 3(a) we
show how the orbital-selective quasiparticle weights lead to
improved agreement with the spin susceptibility as mea-
sured be neutron scattering [8–10,34]. For example, the
signal at Q3 in Fig. 1(a) which originates from interband
nesting between the xy orbital and the xz=yz bands has
been reported by neutron scattering only in Ref. [34],
interpreted as a ridge of the Q1 peak with weaker intensity.
A suppression of the response at Q3 as well as Q2 is

observed when we calculate the spin response in the case of
stronger mass enhancement of the xy orbital compared to
the xz=yz orbitals [43] (Zxz=Zxy > 1). This scenario leaves
the spin anisotropic response at Q1 the main magnetic
feature of our calculation and provides a route to closer
agreement with neutron scattering observations. In this
approach, the linearized gap equation results in either nodal
s0 or dx2−y2 solutions, and a notable absence of odd-parity
pair states, as shown in the phase diagram Fig. 3(b). The
large boundary between the two solutions points to the
possibility of a s0 þ idx2−y2 gap structure which could
reconcile the properties of (1) a decrease in Knight shift
for in-plane fields at T < Tc, (2) nodal low-energy elec-
tronic states available for transport, and (3) signatures of
TRSB [46–48].
In summary we have provided a timely theoretical study

of the leading superconducting instabilities in Sr2RuO4. We
have discussed their spectral and magnetic properties and

focused on recent neutron scattering and Knight shift
measurements, which seem inconsistent with chiral triplet
pairing and point to other preferred pair states for this
material. Several possibilities are discussed, including a
rare helical triplet state and more prevalent even-parity pair
states which, as we have shown, can be distinguished by
future experiments.
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inset shows χzzðqÞ.
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