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Two-dimensional topological insulators (TIs) host gapless helical edge states that are predicted to
support a quantized two-terminal conductance. Quantization is protected by time-reversal symmetry, which
forbids elastic backscattering. Paradoxically, the current-carrying state itself breaks the time-reversal
symmetry that protects it. Here we show that the combination of electron-electron interactions and
momentum-dependent spin polarization in helical edge states gives rise to feedback through which an
applied current opens a gap in the edge state dispersion, thereby breaking the protection against elastic
backscattering. Current-induced gap opening is manifested via a nonlinear contribution to the system’s
I − V characteristic, which persists down to zero temperature. We discuss prospects for realizations in
recently discovered large bulk band gap TIs, and an analogous current-induced gap opening mechanism for
the surface states of three-dimensional TIs.
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Nonequilibrium many-body systems may host a variety
of internal fields, such as dc currents or ac electric fields,
which are not allowed in equilibrium. Through electron-
electron interactions, such fields may give rise to intriguing
feedback effects that lead to novel types of nonlinear
transport phenomena and dynamical phase transitions
[1–8]. By manipulating these internal fields, we may
furthermore obtain new routes for quantum engineering
of material properties [9].
In this work we study how applied currents in combi-

nation with electron-electron interactions can modify the
electronic properties of topological insulator (TI) surface
states. In equilibrium, TIs feature a bulk band gap and
topologically protected gapless Dirac-like helical surface
states [10]. The degeneracy on the surface is protected by
time-reversal symmetry (TRS), and is robust against weak
perturbations that preserve this symmetry. Here we propose
a novel gap opening mechanism that is important for
characterizing the breakdown of topological protection
due to the unavoidable TRS breaking that accompanies
an applied current.
Previous works have explored possibilities of sponta-

neous breakdown of topological surface states in equilib-
rium due to electron-electron interactions [11–16], as well
as means for opening a gap on the surface by explicitly
breaking TRS via magnetic doping [17–21], coupling to the
exchange field of an adjacent magnetic layer [22] or the
nuclear spins of the host material [23–25], or through the
application of a magnetic field [26–28], or circularly
polarized light [29].
Importantly, in the presence of a dc current, the system

lacks TRS. Therefore, by symmetry considerations, an
applied current can break the degeneracy and open a gap in

the helical surface state spectrum. However, in the absence
of electron-electron interactions, the applied current simply
results from a nonequilibrium population of the single
particle surface states, and there is no feedback mechanism
through which the current may modify the spectrum itself.
Crucially, due to the spin-orbit coupling that is naturally
present in TI materials, the applied current also carries a

FIG. 1. Current-induced gap opening on the edge of an
interacting two-dimensional topological insulator. In equilibrium,
the edge hosts a one-dimensional gapless helical mode (upper
left). When a current is driven through the system, a net spin
polarization develops due to spin-orbit coupling (upper right,
bottom). Due to electron-electron interactions, the spin polari-
zation induces a nonvanishing internal exchange field, which acts
back via the momentum-dependent spin quantization axis
[Eq. (1)] to open a gap in the helical dispersion (upper right).
Once Kramers’s degeneracy is lifted, the edge mode is no longer
protected against elastic backscattering by a disorder potential,
UðxÞ (red stars).
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spin polarization [30,31]. Through electron-electron inter-
actions, the spin polarization generates an internal
exchange field that can open a gap in the surface state
dispersion (see Fig. 1).
The gap opening mechanism that we discuss is general,

and can be applied to the surface states of both two-
dimensional (2D) and three-dimensional (3D) TIs. The
nontrivial portion of the feedback, which leads to a gap, is
mediated through the part of the spin-orbit coupling that
causes the spin helicity axis to rotate as a function of energy
[32–34]. We first illustrate the mechanism of current-
induced gap opening for the case of the one-dimensional
helical edge states of a 2D TI. We investigate the depend-
ence of backscattering due to nonmagnetic impurities on
the applied current, and discuss the resulting nonlinear
current-voltage characteristic. We then discuss the exten-
sion of this mechanism to the 2D surface states of 3D TIs.
A generic one-dimensional (1D) helical mode on the

edge of a 2D TI is characterized by a dispersion relation and
a spin helicity axis that determines the directions of the
spinor eigenstates for right (r) and left (l) movers as a
function of the electronic wave number (momentum) k
parallel to the edge [32]. Time reversal symmetry imposes
the constraints that the energy of the left mover at
momentum −k must be equal to the energy of the right
mover at momentum k, and that their associated spins must
be opposite. The latter condition ensures that elastic
backscattering by nonmagnetic impurities is forbidden
due to the orthogonality of the initial and final spin states
[35]. Generically, the spin helicity axes at different values
of k are not parallel [32–34].
To illustrate current-induced gap opening, we consider a

minimal model that exhibits the necessary ingredients of
(i) TRS, (ii) a k-dependent spin-helicity axis, and (iii) elec-
tron-electron interactions. We focus our attention on an
extended single edge of a 2D TI, assuming that the sample
is wide enough to prohibit interedge scattering (cf. [36]). At
the single-particle level, the system is described by the
Hamiltonian [32–34,37]:

H1DðkÞ ¼ ℏvkσz þ λk3σx; ð1Þ

where v is the velocity at small k, and σ ¼ ðσx; σy; σzÞ is the
vector of Pauli matrices describing the electron spin.
The parameter λ controls the rate of rotation of the spin
helicity axis as a function of k. The edge mode dispersion
relation corresponding to Eq. (1) is given by εrðkÞ ¼
signðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏvkÞ2 þ ðλk3Þ2

p
, εlð−kÞ ¼ εrðkÞ [see Fig. 2(a)].

At zero temperature, the states are filled up to the chemical
potential, μ0, which we take to be greater than zero (without
loss of generality).
Current-induced gap opening arises via the spin polari-

zation that naturally accompanies a net current in the
system, due to the spin-orbit coupling in Eq. (1).
Consider a homogeneous, nonequilibrium setting in which

a current I flows due to an imbalance of chemical potentials
μl and μr in the left- and right-moving modes, respectively
[see Fig. 2(a)]: μr ¼ μ̄ − δμ=2, μl ¼ μ̄þ δμ=2, where μ̄ is
the average chemical potential on the edge. The current I is
proportional to δμ. We will work in the limit where λ ≪
ℏ3v3=μ̄2 and where δμ ≪ μ̄, for simplicity. In this regime,
we obtain the spin polarization and induced gap analyti-
cally, to linear order in λ and δμ.
Summing up the spin polarizations of all filled states

between the left and right Fermi wave vectors kl and
kr, respectively [see Fig. 2(a)], we obtain the current-
induced spin density hsi ¼ R kr

kl
ðdk=2πÞhψkþjℏσ=2jψkþi,

where jψkþi is the eigenvector of H1D in Eq. (1) with
positive energy. Expanding kr and kl to linear order
in λ and δμ, kr ¼ ðμ̄=ℏvÞ − ðδμ=2ℏvÞ þOðλ2Þ, kl ¼
−ðμ̄=ℏvÞ − ðδμ=2ℏvÞ þOðλ2Þ, we find [38]:

hsxi ≈ −
λμ̄2

ℏ3v3
δμ

4πv
; hsyi ¼ 0; hszi ≈ −

δμ

4πv
: ð2Þ

At mean field (Hartree-Fock) level, the spin polarization
(2) produces a Zeeman-like internal exchange field through
the electron-electron interaction. For illustration we con-
sider a contact interaction potentialUðRÞ ¼ gδðRÞ, where g
is the interaction strength and R is the interparticle distance.
The exchange field gives rise to the mean-field interaction
Hamiltonian: HMF

int ¼ −ghsi · σ=ℏ. Combining HMF
int with

H1DðkÞ, Eq. (1), we obtain the mean-field Hamiltonian:

HMF
1D ¼ ðℏvk − ghszi=ℏÞσz þ ðλk3 − ghsxi=ℏÞσx: ð3Þ

(a) (b)

FIG. 2. Current-induced gap opening and nonlinear resistance
in 1D helical edge modes of a 2D TI. (a) Unperturbed edge mode
dispersion [see Eq. (1)]. In equilibrium, the system possesses a
finite chemical potential μ̄ ¼ μ0 above the Dirac point. We
describe the current-carrying state by imposing a (local) differ-
ence between chemical potentials μr and μl of the right- and
left-moving modes, respectively. The corresponding Fermi mo-
menta are labeled kr and kl. (b) Setup for calculating the
nonlinear I − V characteristic, Eq. (9). A segment of helical
edge state is contacted by two reservoirs with chemical potentials
μ0 − eV=2 and μ0 þ eV=2, at x ¼ 0 and x ¼ L, respectively. The
chemical potential of the left [right] reservoir sets the boundary
condition for μrðxÞ [μlðxÞ] at x ¼ 0 [x ¼ L]. The current I is
proportional to δμ≡ μlðxÞ − μrðxÞ, which is independent of x
due to current conservation.
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For nonzero hsxi or hszi, the Hamiltonian in Eq. (3) lacks
TRS. Importantly, however, for λ ¼ 0, the term propor-
tional to σx in Eq. (3) vanishes and the edge state remains
gapless [with the Dirac point shifted to k� ¼ ghszi=ðℏ2vÞ].
The energy-dependent spin helicity rotation is essential for
gap opening, as it introduces a non-commuting term in the
Hamiltonian.
The Hamiltonian HMF

1D gives rise to the dispersion
εMF
� ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏvk − ghszi=ℏÞ2 þ ðλk3 − ghsxi=ℏÞ2

p
.

(Here þ and − refer to the positive and negative energy
bands.) We seek the (shifted) position of the upper band
minimum, k�, and the magnitude of the induced gap, Δ,
by setting ðd=dkÞεMFþ ðkÞjk� ¼ 0. This condition yields a
fifth-order polynomial for k�: 3λ2k5� − 3λghsxik2�=ℏ þ
ℏ2v2k� − vghszi ¼ 0. In the absence of a current, δμ ¼ 0,
the Dirac point resides at k� ¼ 0. For small currents,
characterized by the limit δμ ≪ 4πðℏv=gÞμ̄, and in the small
λ limit taken above, the shift of k� is small and the terms
beyond linear order in k� in the polynomial above can be
neglected.Within this regime, to leading order in δμ, we find
k� ≈ ghszi=ðℏ2vÞ ¼ −ð1=4πÞðg=ℏvÞðδμ=ℏvÞ. Evaluating
the dispersion at k�, we obtain the induced gap:

Δ ≈ 2

���� ghsxiℏ

���� ¼ 1

2π

���� g
ℏv

λμ̄2

ℏ3v3
δμ

����: ð4Þ

Note that the assumptionsonsmallδμandλwere takenabove
only to facilitate obtaining a simple analytical result; the
qualitative results do not rely on this limit [39].
The induced gap can be observed directly via tunneling

spectroscopy, or indirectly through its nonperturbative
effects on transport. Due to the fact that HMF

1D lacks
TRS, the protection against elastic backscattering is lost:
even a nonmagnetic disorder potential UðxÞ couples states
with opposite helicities, yielding dissipation on the edge
(see Fig. 1).
To investigate the nonlinear current-voltage character-

istic for a helical edge mode with a current-induced gap, we
consider an edge of length L, contacted by Fermi reservoirs
at x ¼ 0 and x ¼ L with chemical potentials μ0 − eV=2
and μ0 þ eV=2, respectively [see Fig. 2(b)]. Here −e < 0 is
the electron charge and V is the bias voltage.
We consider the situation where forward scattering leads

to rapid local equilibration separately within the left- and
right-moving branches. Near the Fermi surface, the edge
mode populations flðk; xÞ and frðk; xÞ can be described by
Fermi-Dirac distributions with separate, position-depen-
dent chemical potentials μlðxÞ and μrðxÞ, respectively. The
chemical potential of the left reservoir (at x ¼ 0) provides a
boundary condition for the chemical potential of the right
movers, μrðx ¼ 0Þ ¼ μ0 − eV=2; similarly, the right res-
ervoir provides a boundary condition for the left mov-
ers: μlðx ¼ LÞ ¼ μ0 þ eV=2.
Elastic backscattering, leading to resistance, is induced

by the disorder potential UðxÞ in the presence of the

current-induced gap. We assume that μlðxÞ and μrðxÞ vary
gradually in space such that, locally (at each position, x),
the dispersion and scattering properties of the system are
described by Hamiltonian (3), with the local value of the
spin polarization hsiðxÞ determined by Eq. (2) with μ̄
replaced by μ̄ðxÞ ¼ ½μlðxÞ þ μrðxÞ�=2.
To leading order in λ and δμ, the matrix element for

disorder-induced elastic scattering of a right mover with
momentum near kr to a left mover with momentum
near kl is found to be proportional to the overlap
hψMF

klþjψMF
krþi ≈ ðghsxi=ℏμÞ. Here μ ≈ μ̄ðxÞ is the energy of

the scattered electron, and jψMF
kþ i is the positive energy

eigenvector of HMF
1D , Eq. (3). We consider short-range

correlated disorder, characterized by UðxÞUðx0Þ ¼
½ðℏvÞ2=l�δðx − x0Þ, where the overline indicates averaging
over disorder and we express the disorder strength through
the effective mean free path, l, that would arise in a
comparable nonhelical 1D system. Within this model, and
in the limit krl, kll ≫ 1, we obtain the disorder-averaged
backscattering rate 1=τ perturbatively from Fermi’s golden
rule:

1

τ
¼ v

l

�
gλμ̄ðxÞδμ
4πℏ4v4

�
2

; ð5Þ

where we used 1=ð2πℏvÞ as the density of states per unit
length (valid for small λ and small bias [39]). Due to the
current-induced nature of the gap, τ−1 is proportional to
ðδμÞ2 and hence to the square of the applied current.
We seek the steady-state current that flows as a function

of the bias voltage, V. To this end, we study the left- and
right-mover charge densities, ρdðxÞ ¼ ð−eÞ R ðdk=2πÞ×
fdðk; xÞ, with d ¼ fr; lg, and corresponding currents,
IrðxÞ ¼ vρrðxÞ, IlðxÞ ¼ −vρlðxÞ. (Here we again use the
approximation that the velocity is constant, valid in the
limit of small λ and bias [39].) At zero temperature, the total
current I ¼ Ir þ Il is proportional to the (local) chemical
potential difference: I ¼ ½ð−eÞ=h�ðμr − μlÞ ¼ ðe=hÞδμ.
Hence, conservation of total current implies that δμ≡
μlðxÞ − μrðxÞ ¼ constant.
To obtain the spatial profiles of μrðxÞ and μlðxÞ, we

use the continuity equation: ∂xIr ¼ −∂tρrjscatt, where
∂tρrjscatt ¼ −ðρr − ρlÞ=τ is the net rate for right movers
to be scattered into the left-moving branch, and 1=τ is the
backscattering rate, Eq. (5). A similar continuity equation
holds for the left movers. Expressing ρrðxÞ, ρlðxÞ, IrðxÞ,
and IlðxÞ in terms of μrðxÞ and μlðxÞ, we obtain a differ-
ential equation for μ̄ðxÞ:

∂μ̄ðxÞ
∂x ¼ δμ

vτ
≡ Cμ̄ðxÞ2ðδμÞ3: ð6Þ

To clearly expose the μ̄ðxÞ and δμ dependence on the right-
hand side of Eq. (6), we have gathered the remaining
factors into the constant C ¼ g2λ2=½lð4πℏ4v4Þ2�.
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Noting that δμ is constant (see above), Eq. (6) can be
integrated directly to obtain:

1

μ̄ðLÞ −
1

μ̄ð0Þ ¼ −LCðδμÞ3: ð7Þ

We now solve for δμ (and hence the total current, I) as a
function of the bias eV by applying the boundary conditions
above [see also Fig. 2(b)]: μ̄ð0Þ ¼ μ0 − 1

2
ðeV − δμÞ,

μ̄ðLÞ ¼ μ0 þ 1
2
ðeV − δμÞ. Substituting these expressions

into Eq. (7), we obtain a nonlinear equation for δμ:

eV − δμ ¼ LCμ20ðδμÞ3
�
1 −

1

4

�
eV − δμ

μ0

�
2
�
: ð8Þ

The solutions of Eq. (8) together with I ¼ ðe=hÞδμ yield
the I − V characteristic of the system. Note that we have
assumed eV=μ0, δμ=μ0 ≪ 1 throughout.
We analyze Eq. (8) in two limits: a “nearly ballistic

regime,” realized for small biases and/or for short, weakly
disordered systems, and a “resistive regime,” realized for
large biases and/or in long, strongly disordered systems. In
the nearly ballistic regime, characterized by δμ ≈ eV, we let
δμ ¼ ð1 − xÞ eV and solve Eq. (8) to leading order in
x ≪ 1. This solution is consistent for κ≡ LCμ20ðeVÞ2 ≪ 1.
In the resistive regime, realized for κ ≫ 1 and characterized
by δμ ≪ eV, we let δμ ¼ x eV and again solve Eq. (8) to
leading order in x. We find:

I ¼ e2

h

�
V − LCμ20e

2V3; κ ≪ 1 ðnearly ballisticÞ;
ðe2LCμ20Þ−

1
3V

1
3; κ ≫ 1 ðresistiveÞ:

ð9Þ

The behavior in both regimes can be understood in terms of
a series resistor network consisting of a fixed contact
resistance R0 ¼ h=e2 and a nonlinear resistance Rscatt ∼
I2 associated with backscattering that depends quadrati-
cally on the current, I [see text below Eq. (5)]. In the nearly
ballistic regime, the contact resistance dominates:
Rscatt=R0 ≪ 1. Here we may make the replacement
Rscatt ∼ V2, to obtain I ¼ V=ðR0 þ RscattÞ ∼ ðe2=hÞV−
OðV3Þ. In the resistive regime, Rscatt=R0 ≫ 1, we may
neglect R0 to obtain I3 ∼ V.
The nonlinear I − V characteristic (9) should be con-

trasted with other nonlinear contributions to the change in
conductance [11,12,23–25,32,40–42]. For example, in
Ref. [32], Schmidt et al. considered inelastic two-particle
backscattering due to weak interactions and an impurity
potential. The mechanism they considered would give a
quadratic-in-voltage correction to the (nonlinear) conduct-
ance that scales with the temperature squared; the mecha-
nism we describe yields a quadratic-in-voltage correction to
the nonlinear conductance that persists down to zero
temperature. Thus backscattering due to current-induced
gap opening can be distinguished from other mechanisms,

such as inelastic scattering, through the temperature
dependence of nonlinear transport.
The current-induced gap opening mechanism described

above straightforwardly generalizes to the case of 2D
surface states of a 3D TI. For illustration we take a minimal
model Hamiltonian that approximately describes the sur-
face states of Bi2Te3 (see Refs. [43,44]):

H2DðkÞ ¼ ℏvðk × σÞẑþ λk3 cosð3ϕkÞσz; ð10Þ

where k ¼ ðkx; kyÞ, k ¼ jkj, and ϕk is the azimuthal angle
of k. The hexagonal warping term (with strength λ) plays a
crucial role in enabling current-induced gap opening. As
above, we consider the situation where the system is doped
up to a finite chemical potential μ0 above the Dirac point, in
the limit of temperature much less than μ0.
In equilibrium, time-reversal symmetry of H2D

implies that the net spin polarization vanishes, hsi ¼ 0.
When an electric field is applied to drive a dc current
on the surface, the Fermi surface shifts and becomes
distorted, yielding a finite spin polarization hsi ¼R ½d2k=ð2πÞ2�fk;þhψk;þjℏσ=2jψk;þi, where jψk;þi is the
positive energy eigenstate of H2DðkÞ, and fk;þ is the
nonequilibrium distribution function. Through electron-
electron interactions, this spin polarization yields an
internal exchange field captured by the mean field
Hamiltonian:

HMF
2D ðkÞ ¼ ð−vky − ghsxi=ℏÞσx þ ðvkx − ghsyi=ℏÞσy

þ ½λkxðk2x − 3k2yÞ − ghszi=ℏ�σz: ð11Þ

For λ ¼ 0, the spin polarization is purely in plane, hszi ¼ 0,
and the exchange field merely shifts the Dirac point
(without opening a gap). With λ ≠ 0, however, the induced
spin polarization generically opens a gap in the spectrum
of HMF

2D ðkÞ.
The non-equilibrium distribution function fk;þ, and

hence the induced gap, can be obtained, e.g., using a
Boltzmann equation approach analogous to that in
Ref. [45]. Due to the reduced rotational symmetry of the
surface states described by Eq. (10), the induced gap is
sensitive to the direction of the applied field. This model
still displays a high degree of symmetry, which in particular
yields hszi ¼ 0 within the simplest Boltzmann equation
treatment. Consequently, the leading contribution to the
induced gap is third order in both the magnitude of the
applied electric field and the interaction strength, and
therefore turns out to be small for this model.
Discussion.—We have analyzed a new mechanism

through which the interplay between nonequilibrium cur-
rents and electron-electron interactions can modify the
properties of TI surface states. For the 1D edge of a 2D TI,
the magnitude of the induced gap (within the limits of small
λ and δμ taken throughout) is given by Eq. (4). Due to the
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scaling with μ̄2 and 1=v4, a current-induced gap opening is
expected to be the most pronounced in topological insula-
tors with large bulk gaps (allowing for large μ̄ above the
Dirac point), and low edge state velocities. Bulk gaps of the
order of 100 meV and above have been predicted in two-
dimensional transition metal dichalcogenides such asWTe2
[46–48], as well as, e.g., jacutingaite [49] and (function-
alized) stanene (tin) films [50]. To estimate the induced
gap, we take μ̄ ¼ 100 meV, v ¼ 105 m=s [46], and g ¼
e2=ð4πϵrϵ0Þ ≈ 2.4 eV Å [51], where we use ϵr ≈ 6 as the
relative dielectric constant characterizing the 2D TI and its
surroundings [52] (ϵ0 is the vacuum permittivity).
Equation (4) then gives Δ ≈ 0.02λ ½eV Å3�δμ. The value
of λ is currently unknown for the large bulk-gap materials
mentioned above; however, based on trends in the ab initio
data of Ref. [33], for WTe2 we speculate that it may fall in
the range λ ∼ 10−2–10−1 eV Å3, leading to a gap of the
order of 1–10 μeV for a bias voltage of a few mV. In the
nearly ballistic regime of Eq. (9), the resulting fractional
change to the ballistic conductance e2=h is given
by LCμ20ðeVÞ2 ≈ ðL=lÞðΔ=2μ0Þ2.
For the 2D surface states of 3D TIs, current-induced gap

opening is accompanied by the appearance of a Berry
curvature monopole that gives rise to an anomalous Hall
effect. Interestingly, this nonlinear Hall effect is of a
fundamentally different origin than other nonlinear anoma-
lous Hall effects that have been the subject of intense recent
interest [45,53–57]. While these works investigate non-
linear transport due to a Berry curvature dipole that is
present in the equilibrium band structure of the system, the
mechanism we describe arises from the Berry curvature
monopole that arises due self-modification of the system’s
nonequilibrium band structure via electron-electron inter-
actions. The search for platforms where this nonlinear Hall
effect can be enhanced is an interesting direction for
future work.
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