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Two conducting quantum systems coupled only via interactions can exhibit the phenomenon of
Coulomb drag, in which a current passed through one layer can pull a current along in the other. However,
in systems with particle-hole symmetry—for instance, the half filled Hubbard model or graphene near the
Dirac point—the Coulomb drag effect vanishes to leading order in the interaction. Its thermal analog,
whereby a thermal current in one layer pulls a thermal current in the other, does not vanish and is indeed the
dominant form of drag in particle-hole symmetric systems. By studying a quantum quench, we show that
thermal drag, unlike charge drag, displays a non-Fermi’s golden rule growth at short times due to a
logarithmic scattering singularity generic to one dimension. Exploiting the integrability of the Hubbard
model, we obtain the long-time limit of the quench for weak interactions. Finally, we comment on thermal
drag effects in higher dimensional systems.
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Since its inception [1], the Coulomb drag phenomenon—
whereby a charge current in one layer pulls a reciprocal
current in another throughCoulomb interactions alone—has
shed light on the special role of interaction effects in
quantum transport [2]. Coulomb drag measurements have
been instrumental in studying the microscopic structure of
systems as diverse as double-quantum well structures [3,4],
excitons in electron-hole bilayers [5–8], quantumHall states
[9–13], Luttinger liquids [14,15], spin currents in two-
dimensional electron gases [16,17], and bilayer graphene
[18–24], among others. From the theoretical point of view,
the Coulomb drag conductivity generally shows a rich
dependence with temperature, with each regime dominated
by different microscopic processes, and has been general-
ized in many directions [2]. Given the recent interest in the
hydrodynamic behavior of electrons in solids [25–27], an
analogy can also bemade between theCoulombdrag and the
shear viscosity, two processes leading to the equalization of
currents in neighboring layers.
In light of this history, it stands to reason that theCoulomb

drag effect between thermal currents, first studied to our
knowledge in Ref. [28]—in which a thermal current in one
layermay drag along a reciprocal thermal current in the other
through Coulomb interactions—could elucidate the micro-
scopic structure of quantum systems as well. In fact, in
one particularly interesting class of quantum systems—
those having particle-hole symmetry—Coulomb charge
drag effects are known to vanish at leading order [21].
Momentum is transferred between the layers at this order,
but it cannot result in a charge current [29]. This is not a
straightforward effect of symmetry, which would lead to
vanishing at all orders; rather the leading process in

perturbation theory is independent of the sign of the scatter-
ing potential, as with the Born approximation, so that the
currents induced by particle-particle and particle-hole scat-
tering cancel. Such systems are prime candidates for the
study of thermal drag, as thermal drag need not vanish under
particle-hole symmetry, and we find it to be the dominant
form of drag in such systems. Examples include the Hubbard
model at half filling, graphene near the Dirac point, and
superconductors probed at low energy, among others.
In this Letter, we focus on thermal drag between particle-

hole symmetric quantum systems, viewed through the lens
of a quantum quench of the inter-layer interactions in a
bilayer system. We find that thermal drag does indeed
dominate drag physics in these systems and, in sharp
contrast to charge drag, suffers from a scattering singularity
generic to one-dimensional band structures. This singular-
ity leads to a violation of the naïve Fermi’s golden rule,
where the rate of change of the thermal current is
logarithmic in time rather than constant in the thermody-
namic limit. This implies that a simple scattering rate
analysis is generally incorrect, and more sophisticated
perturbation theory analysis must be used; in particular,
the approximation of linearizing the spectrum cannot be
used when dealing with thermal currents without some
method of regulation.
A quench and a Kubo formula.—To study the thermal

drag, let us consider the paradigmatic one-dimensional
Hubbard model,
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where fc†i;σ; cj;σ0 g ¼ δijδσσ0 . Let us view the two spin
species as each forming separate quantum wires, with on
site interactions coupling them. We note that the limit of on
site interactions can be physically motivated as originating
from a screened Coulomb potential with small screening
length. Initialize one species, say spin down, in a thermal
state at temperature T with some small initial energy
current, and initialize the other spin species in a thermal
state with no energy current (with U ¼ 0). Explicitly, since
the free fermion chain may be diagonalized by a simple
Fourier transform with energies Ek ¼ −2t cos k and veloc-
ities vk ¼ 2t sin k (assuming periodic boundary condi-
tions), such a state is given by

hnσki ¼
1

1þ exp½βð−2t cos k − μÞ� − δσ↓ϵ sinð2kÞ; ð2Þ

where ϵ is a small parameter, ensuring the validity of linear
response. The charge and thermal current operators carried
by the σ spin species are given, respectively, by Jσ ¼
L−1P

k vkn
σ
k and JσE ¼ L−1P

k Ekvknσk; hence this initial
state has hJσEi¼ϵδσ↓ and hJσi¼ 0 [diagrammed in Fig. 1(a)].
In this setup, the spin-down channel is the “drive” layer and
the spin-up channel is the “response” layer in the usual
terminology of Coulomb drag, with the caveat that the
“drive” current is allowed to relax (which does not change
the short-time dynamics). We note that, while somewhat
unorthodox, this quench interpretation of the Coulomb drag
problem is physically reasonable and allows for the use of

techniques from scattering theory and integrability that
would be inapplicable in an equilibrium description. To
avoid confusion, from now on, we set the Hubbard hopping
parameter t ¼ 1.
At time t ¼ 0, let us quench on the interaction term U.

We are interested in the change over time of the heat current
in the spin-up channel. From the perspective of linear
response, one would expect that an initial thermal current in
the spin-down channel would drag along a thermal current
in the spin-up channel, leading to the development of a
temperature gradient for the spin-up species that is propor-
tional to the initial energy current. This would give a
thermal drag conductivity of

κD ¼ Jð1ÞE

∇Tð2Þ ; ð3Þ

where Jð1ÞE is taken at time t ¼ 0, and here (1) refers to spin
up and (2) to spin down.Now, generally speaking, there is no
perturbing Hamiltonian for a temperature gradient, so there
is no straightforwardmethod of deriving a Kubo formula for
thermal conductivities. One may argue, however, based on
entropy production in the system, that there exists an
effective perturbing Hamiltonian and from this derive a
Kubo formula [30]. Adapting this method, we arrive at a
Kubo formula for the thermal drag conductivity [28,31],

κσσ
0

ab ðq;ωÞ¼
1

VT

Z
∞

0

dteðiω−0þÞt

×
Z

β

0

dλhJσQ;bð−q;−iλÞJσ
0

Q;aðq;tÞi ð4Þ

with V as the system size, σ and σ0 layer indices, q the wave
vector, JQ the heat current, and a and b spatial indices (in the
case of higher dimensional systems).
With this Kubo formula in hand, we can connect our

quench picture to the thermal drag conductivity by the
following argument: if the initial rate of change of the energy
current in the spin-down species is some rate ∂thJ↑Ei ¼ Γ,
then by the fluctuation-dissipation theorem [37] we
should expect that the two-point function is exponentially
decaying with the same rate Γ. This would give
κD ∼

R
∞
0 dteiωte−Γt ¼ 1=ðΓ − iωÞ, which,while identifying

Γ ¼ 1=τ with τ a scattering time, would reproduce the usual
Drude relation.We caution that in this case, however, a naïve
Drude analysis will fail due to the complicated behavior of
the energy current postquench, which we examine below.
To calculate Γ, we seek the quantity ∂tn

↑
k, under the

perturbation of the Hubbard interaction. To lowest (second)
order in U,

∂tn
↑
k ¼ U2

X
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ΔE
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is the net Fermi factor for the inward and outward scattering

(a)

(b)

FIG. 1. (a) The thermal Coulomb drag geometry considered in
this Letter. A conducting quantum system’s top layer is held at a
temperature gradient by connecting it to two reservoirs at
temperatures TH > TC, causing a thermal current to flow;
through quantum interactions U, a thermal current is dragged
in the bottom layer. (b) The source of the divergent scattering
process leading to the breakdown of the usual Fermi’s golden rule
in one-dimensional systems, namely when all incoming and
outgoing particles have the same velocity v but differ in energy.
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processes, Δk ¼ kþ k2 − k3 − k4 and ΔE ¼ Ek þ Ek2−
Ek3 − Ek4 . In the usual Fermi’s golden rule, one takes
the limit of large t, which sends sinðtΔEÞ=ΔE → πδðΔEÞ
provided that the quantity being integrated against does not
diverge at ΔE ¼ 0. This is the case for Coulomb drag of
charge currents, which is well behaved; however, this is not
the case for the energy current, as we shall see, and we must
deal with the divergence carefully.
Imposing momentum conservation, the energy current

grows as

∂tJ
↑
E ¼ 2

L

X
k

sinð2kÞ∂tn
↑
k : ð6Þ

We can usefully rewrite this expression by moving the
sum on k to an integral in energy space of a quantity GðEÞ,
integrating against a kind of “density of states” [38].
Focusing on half filling μ ¼ 0, the function GðEÞ contains
the essential divergence of the response energy current,
namely

GðEÞ ∝
Z

dk1dk3
X
ν¼1;2

Fðk1; k2;ν; k3Þ
jvðk1 þ k2;ν − k3Þ − vðk2;νÞj

; ð7Þ

with vðkÞ ¼ ∂kEðkÞ ∝ sin k as the group velocity, the
function F does not diverge, and ν indexes the solutions
to ΔE − E ¼ 0. Clearly, the source of the divergence is the
difference of velocities in the denominator, corresponding
to a resonance of points in k space with different energies
but the same velocity. Physically, this shows that the energy
current operator diverges at small energies ΔE ≈ 0, which
are directly probed by the sincðtΔEÞ term in perturbation
theory, and it is because of this singular behavior that
Fermi’s golden rule breaks down.
There are two conditions under which the denominator

diverges: the trivial case of k1 ¼ k3, and the nontrivial
second solution. In the first instance, one can readily see
that the numerator also vanishes, and hence there is no
divergence. For the second solution, which occurs here at
k1 þ k2 − k3 ¼ π − k2, but must occur somewhere in a
generic one-dimensional band structure, one finds that the
numerator also vanishes for a charge current—and hence, it
is well-behaved—while it does not for the energy current.
The divergence is pointlike, in the sense that for every
incoming k there is a finite set of partners fk0g with the
same velocity. That there must be at least one partner is a
consequence of the lattice, i.e., the periodicity of the band
structure [see Fig. 1(b)].
At small but finite E, we can regularize the denominator,

ultimately leading to a logarithmic divergence. A careful
accounting yields

gðEÞ ¼ ϵ
4U2

ð2πÞ3
Z

π

−π
dk

fðkÞ
jsin k=2j logE; ð8Þ

where gðEÞ¼½GðEÞþGð−EÞ�=2 is the symmetric part of
GðEÞ,fðkÞ¼−2sin2ðkÞnðEkÞnð−EkÞ, andnðEÞ is the Fermi-
Dirac distribution. Finally, using

R
∞
−∞ dx logðxÞsincðxtÞ ¼

−πðγ þ log tÞ=t, with γ the Euler-Mascheroni constant, and
keepingonly the dominant term in the large t limit,we arrive at
the result

∂tJ
↑
E

J↓Eðt ¼ 0Þ
¼ α log tþOð1Þ; ð9Þ

with

αðTÞ ¼ U2

π2

Z
π

0

dkjuðkÞj2 sin2k cscðk=2Þ
1þ cosh½2β sinðk=2Þ� ; ð10Þ

where, for generality, we have allowed for k-dependent
interactions, UðkÞ ¼ UuðkÞ, and in the Hubbard model with
on site interactions uðkÞ ¼ 1.We remark that this logarithmic
behavior is quite general: we expect it for any lattice band
structure in 1D, as such band structures must generically have
points where vðkÞ ¼ vðk0Þ but EðkÞ ≠ Eðk0Þ. Further, other
kinds of interactions only modify the prefactor of the log
growth. This integral cannot be computed analytically, but for
Hubbard, the low- and high-temperature limits are readily
analyzed. First, at low temperatures, the denominator is a
strongly peaked function about k ¼ 0; expanding the numer-
ator in Taylor series and performing the integration yields

αðTÞ ≈
T≪1

4U2 log 2
π2

T2; ð11Þ

in units of Hubbard hopping t ¼ 1 and kB ¼ 1. In the high
temperature limit the demoninator is approximately constant,
yielding

αðTÞ ≈
T≫1

4U2=3π2: ð12Þ

We have numerically checked this expression by exactly
summing Eq. (5) on system sizes of L > 3000 and
calculating ∂tJE and ∂tJ. The results are shown in
Fig. 2; the logarithmic growth of the energy current is
clear both at half filling (μ ¼ 0) and away from half filling
(μ ¼ −1.5). We recover the result that, as expected, there is
no charge drag at half filling, confirming that thermal drag
dominates in this regime, while we do notice a drag
thermopower effect away from half filling. Finally, the
observed dependence on temperature of the prefactor of the
log, obtained by fitting at various temperatures, is in
excellent agreement with Eq. (10), which we integrate
numerically and whose asymptotics we plot. This confirms
that the processes considered in this section indeed domi-
nate the thermal drag to an excellent approximation.
A few remarks are now in order. First, the breakdown

of Fermi’s golden rule for the energy current is generic to
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one-dimensional systems, as any band structure will dis-
play the same kind of divergence. Second, due to the
divergence, the widespread technique of linearizing the
spectrum [39] will fail badly in analyses of thermal drag. In
this case, band curvature effects may be included directly in
the field theory and treated perturbatively [40]. Third, the
timescale for the validity of perturbation theory is para-
metrically reduced for thermal drag calculations: perturba-
tion theory holds only up to a timescale t−1� ∼U2 logU.
Finally, one may consider the effects of adding a small
magnetic field: to lowest order, the field would simply shift
the chemical potential in the two species in opposite
directions [41], effectively breaking particle-hole sym-
metry. In that case, we no longer expect a vanishing charge
drag. However, the logarithmic growth of the response heat
current would remain, as it is present for any chemical
potential, being a consequence of the band structure.
To access longer times, we make the approximation of a

linear spectrum (Luttinger liquid) and regulate the breakdown
of Fermi’s golden rule [42]. Linearizing the spectrum
produces a left- and a right-moving mode, described by
wavevectorqL=R¼k�kF with dispersion relationEðqL=RÞ¼∓vFqL=R. We must then consider eight possible scattering
channels: two forward scattering channels, two Umklapp
channels, and four backward scattering channels. For sim-
plicity,we slightlymodify the setup such that one spin species
is kept at a temperaturegradientwithk < 0 atTL andk > 0 at
TR, with the other species in the ground state (T ¼ 0).

Analyzing these possible scattering channels, we find
that, while the Umklapp and backscattering channels give a
finite rate, the forward scattering channel leads to a
divergence with system size, a one-dimensional incarnation
of the well-known “collinear scattering singularity” in
Dirac-dispersing systems [2,43,44]. This is due to the fact
that, for the forward scattering channel, the conservation of
energy and momentum become the same constraint, lead-
ing to a delta function squared appearing under the
scattering integral. This type of divergence was noted in
Ref. [32] in the case of Coulomb drag for spinful Luttinger
liquids. To recover a finite answer, it was proposed that one
go past lowest order perturbation theory, inserting the RPA
propagator in place of the bare propagator in the scattering
integral (dubbed the “generalized Fermi’s golden rule”). In
our case, it amounts to taking the incoming particles to have
velocity vF while the outgoing particles have velocity u, the
Luttinger velocity, which is interaction dependent. Under
this prescription, we find a heat current growth rate that is
actually first order in the interaction U,

∂tJ
↑
E ∼U

2π4 log 2
3ℏvF

k3BðT3
R − T3

LÞ; ð13Þ

due to the interaction-renormalized outgoing velocity
cancelling a power of U. In sum, due to the unique
divergences of heat drag as opposed to charge drag, we
expect a logarithmic heat current growth rate at the shortest
times that is second order inU, followed by a longer regime
of heat current growth rate that is constant in time and first
order in U. We emphasize that the charge drag in particle-
hole symmetric systems vanishes to lowest order, and only
enters at order U3 (if at all); hence thermal drag is the
dominant form of drag physics in this broad class of
systems.
Long-time limit and higher dimensions.—Generally

speaking, the long-time limit of this quench is outside
the realm of validity of perturbation theory, and therefore
inaccessible. However, here we may exploit the integra-
bility of the one-dimensional Hubbard model to make
progress [45]. In particular, due to its integrability, the one-
dimensional Hubbard model hosts a tower of conserved
quantities, the number of which is extensive in system size.
One such quantity, known as Q3, differs from the total
energy current operator only by a term of order U; that is,

JE ¼ t2
X
l;σ

iðc†lþ1;σcl−1;σ − c†l−1;σclþ1;σÞ

−
Ut
2

X
l;σ

ðjl−1;σ þ jl;σÞðnlσ̄ − 1=2Þ;

which takes the same form as Q3 except for a factor of 2 in
the term proportional to U [46]. This implies that in the
limit of small U, JE ≈Q3 and is hence conserved. (We note
that even in the limit of stronger U, the overlap of JE with

FIG. 2. The growth of the heat and energy currents in the
bottom layer due to the Coulomb drag, to OðU2Þ in perturbation
theory. At half filling μ ¼ 0, no charge drag occurs due to
particle-hole symmetry (red dots); this is no longer true away
from half filling (black dots). In both cases, thermal drag is
nonzero and the rate of change grows logarithmically in time as
αðTÞ log t (red and black triangles), rather than saturating to a
constant as would be naïvely expected. Inset: the prefactor for this
log growth αðTÞ as a function of temperature. Agreement with the
analyical formula of Eq. (10) is excellent (solid line); the
asymptotics are αðTÞ ¼ 4U2T2 log 2=π2 for small T (dashed
line) and αðTÞ ¼ 4U2=3π2 for large T (dotted line).
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Q3 will be conserved, leaving some energy current in the
final state.) Under the assumption of approach to a
generalized Gibbs ensemble final state [47] with this same
value of Q3, we expect that the energy current will be
equally divided between the two wires. That is,

J↑Eðt → ∞Þ ¼ J↓Eðt → ∞Þ ¼ J↓Eðt ¼ 0Þ
2

: ð14Þ

The conservation of the energy current is likely a special
feature due to the integrability of the Hubbard model, but
we remark that in this case it leads to an intriguing
hydrodynamic transport of energy current reminiscent of
the Dirac fluid [48].
Since the source of the divergent heat drag is related to

special properties of scattering in 1D, we do not expect the
same divergence to appear generically for higher dimen-
sional systems. As a check, we have considered the
Hubbard model on the square lattice with nearest-neighbor
hopping [49]. We have numerically explored this model for
various values of the chemical potential and temperature on
system sizes of up to Lx ¼ Ly ¼ 100. We find that the
thermal drag indeed dominates near half filling, and it does
not appear to be divergent. We defer an exhaustive analysis
of the two-dimensional case to future work.
Discussion.—We have analyzed a thermal analog of the

Coulomb drag in interacting quantum systems with par-
ticle-hole symmetry via a quantum quench in the Hubbard
model. We have found that, due to the vanishing of the
charge Coulomb drag, the thermal drag effect dominates. In
one dimension, its growth is drastically different than the
charge drag due to the structure of the energy current
operator: the short-time limit shows logarithmic non-
Fermi’s golden rule growth, followed by a longer regime
of linear growth given by a generalized golden rule, with
the late-time limit in this case obtained from integrability
arguments.
We expect these conclusions to apply to a broad range of

experimentally realizable systems, including perhaps most
prominently graphene near charge neutrality. It is an
interesting question whether some components of the
thermal Coulomb drag may be topologically quantized
in certain systems, especially in light of recent experiments
on the thermal Hall effect at nonchiral Hall edges [50]. We
emphasize that, despite the vast literature on the charge
Coulomb drag, the thermal drag effect is largely unexplored
[51], and is ripe for further study.
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