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Electrons moving in a Bloch band are known to acquire an anomalous Hall velocity proportional to the
Berry curvature of the band which is responsible for the intrinsic linear Hall effect in materials with broken
time-reversal symmetry. Here, we demonstrate that there is also an anomalous correction to the electron
acceleration which is proportional to the Berry curvature dipole and is responsible for the nonlinear
Hall effect recently discovered in materials with broken inversion symmetry. This allows us to uncover
a deeper meaning of the Berry curvature dipole as a nonlinear version of the Drude weight that serves
as a measurable order parameter for broken inversion symmetry in metals. We also derive a quantum
rectification sum rule in time reversal invariant materials by showing that the integral over frequency of
the rectification conductivity depends solely on the Berry connection and not on the band energies. The
intraband spectral weight of this sum rule is exhausted by the Berry curvature dipole Drude-like peak, and
the interband weight is also entirely controlled by the Berry connection. This sum rule opens a door to
search for alternative photovoltaic technologies based on the Berry geometry of bands. We also describe the
rectification properties of Weyl semimetals which are a promising platform to investigate these effects.
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Introduction.—The Berry phase has become a protago-
nist on our modern understanding of the motion of
electrons [1] and in the classification of their phases
[2,3]. The Berry curvature determines an anomalous
electron velocity which gives rise to the intrinsic Hall
effect in materials without time reversal symmetry [4].
It has been recently predicted [5–7] and experimentally
observed [8–10] that materials with time reversal symmetry
can display a nonlinear Hall effect. The nonlinear Hall
conductivity characterizing this effect is a product of the
Berry curvature dipole (BCD), an intrinsic quantum geo-
metric property of the material [7], and the scattering time,
which is subject to sample quality variations. This poses the
question of whether the BCD could be probed or defined in
a more fundamental manner that is less intertwined with
disorder effects [11–15].
In this Letter, we propose that the BCD is indeed a

fundamental property of metals that plays the role of a
nonlinear Drude weight, namely, it measures an anomalous
non-Newtonian Hall acceleration that scales with the
square of the electric field and that is allowed in materials
without inversion symmetry. We will call this correction to
the electron acceleration the nonlinear Hall acceleration.
The first section of our work will be devoted to demon-
strating this result in the low energy single band limit.
Subsequently, by developing unifying theory of the second
order optical and transport phenomena of metals and
insulators, we will demonstrate a quantum rectification
sum rule (QRSR), according to which the rectification
conductivity of time-reversal-invariant materials integrates
to a quantity that is entirely controlled by the Berry

connection, and the BCD exhausts completely its intraband
weight, as depicted in Fig. 1, and in analogy to how the
conventional Drude weight is related to the Drude peak in
the linear conductivity of metals. This suggest that mea-
surements of the rectified current over a broad frequency
range offers a systematic way to estimate the BCD that
bypasses detailed knowledge of the scattering rate, which
could help disentangle the more subtle disorder mediated
corrections [11–15] present in current experiments [8–10].
The BCD therefore offers a solution to the long-standing
problem of defining a measurable order parameter for
broken inversion symmetry in metals, since the electric
polarization, which is a natural order parameter for broken
inversion symmetry in insulators, is generally ill defined in
systems where charge can freely flow.
Single-band limit.—We begin by writing the Hamiltonian

describing the dynamics of electrons in a crystal in the
presence of a time dependent but spatially uniform electric
field in the length gauge [16,17]:

Ĥnm ¼ δnmϵnðkÞ þ er̂nm ·EðtÞ; ð1Þ

here n, m are band indices and k crystal momentum, ϵnðkÞ
is the band energy dispersion, r̂nm ¼ iδnm∂k þ Ânm is the
position operator in the Bloch basis, and ÂnmðkÞ ¼
ihunkj∂kjumki is the non-Abelian Berry connection [18].
Before solving the full multiband problem, we consider the
special limit in which electric field is slowly varying in time
and the low energy dynamics of electrons can be described
by projecting the Hamiltonian in Eq. (1) onto a single band,
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which will illuminate on the deeper meaning of the BCD. In
this limit, the acceleration operator can be shown to contain
two terms (see the Supplemental Material [19], section A):

âγn ¼ −e
Eα

ℏ2

∂2

∂kα∂kγ ϵn þ e2
EαEβ

ℏ2

∂
∂kα Ω̂

βγ
n ; ð2Þ

here Ω̂αβ
n ¼ ∂Âα

nn=∂kβ − ∂Âβ
nn=∂kα is the Abelian Berry

curvature of the band “n.” The first term expresses the
conventional Newton’s second law and the tensor
relating the electric field and the acceleration determines
the ordinary linear Drudeweight. The second term, however,
is a non-Newtonian acceleration that is orthogonal to the
applied electric field, which we call the nonlinear Hall
acceleration. The average over the occupied states of the
tensor relating the nonlinear Hall acceleration and the
bilinears of the electric field is precisely the BCD [7]
[dλ ¼ ϵλαβDαβ ¼ ϵλαβϵβγμð2πÞ−3=2Pn

R
dkΩμγ

n ∂fn=∂kα].
Notice that there is no extrinsic quantity in this relation.
Therefore the BCD can be interpreted as a nonlinear Drude
weight, which is nonzero only when the system has a Fermi
surface and breaks inversion symmetry. In metals there is
invariably a friction to the electron flow created by the
impurities, phonons, and umklapp processes, that ultimately
brings the liquid into a steady state with zero acceleration in
the presence of an electric field. The terminal velocity will
depend on the scattering rate from such agents, and this is
why the nonlinear conductivity ends up depending on the
scattering rate and not only on the BCD, in an analogous
fashion to how the linear conductivity depends not only on
the Drude weight but also on the scattering rate. Throughout
our Letter, we will take a simple relaxation time picture of
disorder. The detailed role of disorder on the nonlinear
conductivity of metals is indeed a subject of current intense
investigation [11–15].

Multiband formalism.—We will now develop a multi-
band theory that is applicable to metals and insulators
by modelling relaxation processes in a minimal fashion
following the spirit of the relaxation time approximation,
with the following non-Hermitian Liouville equation for
the density matrix ρ̂:

iℏ
d
dt

ρ̂ðtÞ − ½Ĥ0; ρ̂ðtÞ� ¼ −iℏΓðρ̂ðtÞ − ρ̂0Þ; ð3Þ

here Γ is the relaxation rate and ρ̂0 is the equilibrium
density matrix. Following a standard perturbation theory
analysis (see the Supplemental Material [19], Sec. B) one
obtains the full second order conductivity tensor with two
input driving frequencies ω1;2 and the output current at a

FIG. 1. Illustration of the real part of the rectification conduc-
tivity which is the spectral weight on the QRSR in Eq. (6). The
intraband weight is exhausted by a Drude-like peak whose area
equals the BCD up to universal constants.

FIG. 2. (a) Illustration of the second order conductivity tensor
with two input frequencies, ω1;2, and space indices, αβ, for the
driving electric field and one output current at frequency at
ω1 þ ω2 with space index γ. (b) Depiction of the geometry of the
BCD antisymmetric part [7] (green vector), the driving linearly
polarized electric (blue vector), and the second order electric
current (red arrow). The three vectors are coplanar and the current
is orthogonal to the electric field. (c) Crystal structure of TaAs
with BCD (green arrow) oriented along its polar axis. (d) Weyl
nodes in the Brillouin zone of TaAs with one elementary Weyl
pair highlighted.
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frequency ω1 þ ω2 [see Fig. 2(a)], and which can be
separated into metallic and interband terms as follows:

σγβαð2Þ ðω1;ω2Þ ¼ σγβαMetðω1;ω2Þ þ σγβαInterðω1;ω2Þ: ð4Þ

The interband terms contain the shift and injection
currents identified in previous studies [16,17,20] and are
reproduced in detail in the Supplemental Material [19],
Sec. B. The metallic terms are those which would man-
ifestly vanish in the absence of a Fermi surface and that
diverge in the low frequency ω1;2 → 0 and clean limits
Γ → 0. Their explicit expression is this:

σγβαMetðω1;ω2Þ ¼ −
1

2

e3

ℏ2

Z
dk

ð2πÞ3
X
nm

×

� ∂ϵn∂kγ
∂2

∂α∂β fnδnm
ðω1 þ ω2 þ iΓÞðω2 þ iΓÞ

þ ðϵm − ϵnÞÂγ
mnÂ

α
nm

∂
∂kβ ðfm − fnÞ

ðω2 þ iΓÞðω1 þ ω2 þ ϵm − ϵn þ iΓÞ

þ
�

α ↔ β

ω1 ↔ ω2

��
; ð5Þ

here fn is the Fermi Dirac distribution and (α ↔ β,
ω1 ↔ ω2) denotes symmetrization under simultaneous
swap of the indices (α, β) and the frequencies (ω1, ω2).
The first term is a purely semiclassical Jerk term [20]. This
term is distinct from the third order Jerk effect described in
[21,22] and vanishes under time-reversal-symmetric con-
ditions which we will assume from here on. The second
term is a multiband finite frequency generalization of the
BCD nonlinear Hall conductivity, which at low frequencies
reduces [see the Supplemental Material [19], Sec. B,
Eq. (12)] to the expression in [7].
Quantum rectification sum rule.—We will state now

one of the central findings of our study. Using the full
expression for the second order conductivity, including the
metallic and interband terms, and for any time reversal
invariant material one can show (see the Supplemental
Material [19], Sec. B) that the following quantum rectifi-
cation sum rule (QRSR) holds in the clean limit (Γ → 0):

4
ℏ2

e3
1

π

Z
∞

0

dωRe½σγβαð2Þ ð−ω;ωÞ�

¼
� ∂
∂kβ Ω̂

αγ

�
þ
��

Âβ; i
∂
∂kα Â

γ

	�
þ h½Âβ; ½Âα; ˆ̄A

γ��i

þ ðα ↔ βÞ; ð6Þ

where ˆ̄A
α
nm ¼ Âα

nmð1 − δnmÞ is the off-diagonal non-Abelian
Berry connection and average is defined as follows:

h� � �i ¼
X
n

Z
dk

ð2πÞd fnhnjð� � �Þjni: ð7Þ

The integrand in this sum rule is the real part of the
rectification conductivity which measures the net dc current
produced by an ac linearly polarized electric field (see the
Supplemental Material [19], section C). Remarkably, all the
low frequency subgap spectral weight is exhausted by a
delta function peak at zero frequency whose weight is given
by the BCD, and which gives rise to the first term in the
right-hand side of Eq. (6) (see Fig. 1). The remaining
weight accounting for the two other terms in the right-hand
side arise from interband terms that are only nonzero when
the frequency is above the spectral gap (see Fig. 1). It is
remarkable that both intra- and interband terms integrate
to a quantity that is purely quantum geometric depending
only on the Berry connection. This sum rule offers a direct
way to measure the BCD that bypasses knowledge of the
disorder relaxation rate, by integrating the rectified current
over frequency, in complete analogy to how the Drude
weight is estimated from the conductivity in metals. A
related rectification sum rule derived under more restricted
conditions was recently reported in [23].
This sum rule also opens a door to a systematic search for

alternatives to conventional photovoltaics in which the band
geometry plays a central role in the rectification mechanism
[23,24]. This is because the rectification weight, defined as
the right hand side of Eq. (6), provides a natural figure of
merit for photocurrent generation when the light spectrum is
broad in comparison to the bandwidth of interest and its
calculation could be efficiently streamlined with realistic
modeling of band structures. The rectification weight has
units Ld−3, and, interestingly, it is dimensionless in 3D. The
rectification weight of time reversal invariant materials
therefore joins a select group of observables that are entirely
controlled by the Berry geometry including the Hall con-
ductivity [1,4], the polarization [24–26], and the magneto-
electric coefficient of 3D topological insulators [27,28].
Weyl semimetals.—We will now apply our theory to

Weyl semimetals which are topological states that can be
realized in three-dimensional materials that break either
inversion or time reversal symmetry [29]. Their nonlinear
optoelectronic properties are a subject of intense current
investigation [30–34]. We will consider first the ideal
model of an isolated Weyl node and subsequently a model
of mirror related Weyl node pairs that captures the essential
behavior of materials such as TaAs. A Hamiltonian for a
single Weyl node is [29]:

Ĥ0 ¼ v0
X

α¼x;y;z

kασ̂α þ uzkz1̂: ð8Þ

Here v0 is a Fermi velocity, uz is the tilt in z direction, σ̂α
are Pauli matrices, and 1̂ is identity operator. In the clean
limit, we have found that the rectification conductivity of an
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ideal Weyl node has only two contributions: the intraband
BCD term and the interband injection current term respon-
sible for the circular photogalvanic effect in [33,34], as
shown in [see Figs. 3(a)–3(c)]. The BCD tensor of a Weyl
node is symmetric and its nonzero components are

ðD̂Þαβ ¼ Dαβ ¼ 1

2
εβγμ

X
n

Z
dk

ð2πÞ3 Ω̂
μγ
n

∂
∂kα fn; ð9Þ

Dxx ¼ Dyy ¼ 1

8π2
1

ũ3

�
ũþ ũ2 − 1

2
ln
1þ ũ
1 − ũ

�
; ð10Þ

Dzz ¼ 1

4π2
ũ2 − 1

ũ3

�
ũ −

1

2
ln
1þ ũ
1 − ũ

�
; ð11Þ

here ũ ¼ uz=v0. Notice that the BCD of a single Weyl point
does not depend on the location of the Weyl point in
momentum space, as found in [35]. The origin of this
inconsistency is discussed in the Supplemental Material
[19], section D. Remarkably the trace of BCD for a Weyl
node is a universal quantity independent of the details of its
Hamiltonian determined by its integer valued monopole
strength (Sj ∈ Z) [29]:

Tr½D̂� ¼ Sj

4π2
: ð12Þ

The BCD rectification conductivity is given by

jð0ÞBD ¼ e3

ℏ2

Z
∞

−∞
dω

i
ωþ iΓ

½fD̂:Eð−ωÞg × EðωÞ�: ð13Þ

Therefore the QRSR for an ideal Weyl node yields

Z
∞

−∞
σγβαð2Þ ð−ω;ωÞdω ¼ e3

ℏ2

Dzz −Dxx

2
fδαzεγzβ þ ðα ↔ βÞg:

ð14Þ

Notice that Weyl nodes related by time reversal sym-
metry have the same BCD tensors, and, therefore, even
though the responses from Weyl nodes of opposite topo-
logical charge tend to cancel, the net response in materials
without symmetries relating nodes of opposite charge, such
as SrSi2 [36,37], will be finite. However, several Weyl
materials such as TaAs [38–41] have mirror symmetries
mapping Weyl nodes of opposite charge. In fact, for TaAs
with space group I41md only the antisymmetric part of the
BCD tensor is allowed [7], and therefore, the contribution
to the net BCD tensor from the linearized model cancels
after adding all nodes. However, TaAs and related materials
are expected to have a large BCD [42]. A reason for this
enhancement in TaAs is the proximity of pairs of nodes of
opposite charge [see Fig. 2(d)]. Related large enhancements
have been predicted in BiTeI [43]. The ideal Hamiltonian
describing such pairs is [29,43]

Ĥ ¼ vxkxσ̂x þ
λ − k2y
2m

σ̂y þ vzkzσ̂z þ uxkx1̂: ð15Þ

Here vx, vy ¼
ffiffiffiffiffijλjp
=m, vz are anisotropic Fermi veloc-

ities, ux is tilt in the x direction and 2λ is the node shift. The
antisymmetric BCD tensor (defined as: dα ¼ ϵαβγDβγ) is a
vector oriented along the polar axis of TaAs [see Figs. 2(b)
and 2(c)], and the contribution from each Weyl-node pair to
the BCD is

dz ≈ −
3vxvzuxn1=3

10π4=3v2ymð3vxvyvzÞ2=3
; ð16Þ

where n is a density of carriers. The rectification response
to linearly polarized fields, shown in [see Fig. 3(c)],
displays a clear separation between the interband and the
BCD term, making it viable to estimate the BCD by
integrating it up to some ω ≪ 2ϵF.

FIG. 3. Rectification conductivity (in units of fe3=½Γð2πÞ3ℏ2�g) for (a) linearly polarized light of a single Weyl node displaying the
BCD Drude-like peak (ℏΓ ¼ 0.05ϵF, uz ¼ 0.2v0). (b) circularly polarized light has two contributions: a BCD term at low frequency and
an interband term (shown in the inset) which leads to the quantized circular photo-galvanic effect (dashed horizontal line) described in
[33,34]. (c) linearly polarized light of a Weyl node pair model relevant for TaAs, with its Drude-like BCD peak clearly separated from
the interband term [displayed in inset, ℏΓ ¼ 0.01ϵF, ux ¼ 0.05vx, Δ ¼ 5ϵF, vx ¼ vz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2ΔÞp

].

PHYSICAL REVIEW LETTERS 123, 246602 (2019)

246602-4



Figure 3 shows the response of these ideal models for
Weyl nodes. The real and imaginary parts of the second
order conductivity have a crucially distinct nature, because
the former controls the response to time-reversal-symmetric
drive (linearly polarized light) while the second to time-
reversal-breaking drive (circularly polarized light). See
the Supplemental Material [19], section C, Eq. (23). The
QRSR requires knowledge only of the real part. Figure 3(a)
illustrates this for a single Weyl node. Such contribution
would cancel when adding Weyl pairs related by a mirror
symmetry as it is the case for TaAs. Figure 3(c), however,
illustrates that there is a finite contribution beyond the
linearized model even in the case of Weyl pairs related by a
mirror, which could be observed in TaAs. For completeness
we also show the response to circularly polarized light
in Fig. 3(b), illustrating how our formalism interpolates
from the interband effects of [33,34] to the low frequency
intraband BCD peak.
Discussion.—We have shown that the BCD controls a

nonlinear Hall acceleration in metals without inversion
symmetry that scales with the square of the applied electric
field. Therefore, the BCD can be viewed as a nonlinear
version of the Drude weight, that serves as a measurable
order parameter for metallic inversion symmetry breaking.
We have also shown that the nonlinear conductivity of

time-reversal invariant materials satisfies a QRSR whose
intraband weight is exhausted by a sharp Drude-like BCD
peak, and, remarkably, also the interband contributions to
this QRSR are purely controlled by the Berry connection,
with all dependence on band energies disappearing. The
rectification weight defined by this sum rule, therefore,
provides a figure of merit for dc current generation in
response to light, provided that the incident spectrum is
broad in comparison to the band energy window of interest.
We hope that this rectification weight could be estimated
from first principle studies to help guide the search for
alternative photovoltaic materials based on the quantum
geometry of Bloch bands. Another promising avenue of
applications for these effects are wireless energy harvesting
devices [12,44].
Weyl semimetals are also promising platforms to study

these effects. In particular, several polar Weyl materials
such as TaAs will have a large vectorial component of the
BCD aligned with its polar axis [see Figs. 2(b) and 2(c)].
The BCD and the QRSR in these materials could be studied
by measuring a nonlinear Hall current flowing along the
polar axis in response to a driving electric field in the plane
perpendicular to the polar axis as a function of frequency.
Cold atomic systems also offer an interesting alternative

platform to investigate these nonlinear effects of the Berry
geometry [45–50], where the slower time scales for
dynamics and the absence of friction might allow the
direct measurement of the nonlinear Hall acceleration.
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