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The first complete estimation of the compressible energy cascade rate jεCj at magnetohydrodynamic
(MHD) and subion scales is obtained in Earth’s magnetosheath using Magnetospheric MultiScale
spacecraft data and an exact law derived recently for compressibleHall MHD turbulence. A multispacecraft
technique is used to compute the velocity and magnetic gradients, and then all the correlation functions
involved in the exact relation. It is shown that when the density fluctuations are relatively small, jεCj
identifies well with its incompressible analog jεIj at MHD scales but becomes much larger than jεIj at
subion scales. For larger density fluctuations, jεCj is larger than jεIj at every scale with a value significantly
higher than for smaller density fluctuations. Our study reveals also that for both small and large density
fluctuations, the nonflux terms remain always negligible with respect to the flux terms and that the major
contribution to jεCj at subion scales comes from the compressible Hall flux.
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Introduction.—Turbulence is a universal phenomenon
observed from quantum to astrophysical scales, see, e.g.,
Refs. [1–3]. It is mainly characterized by a nonlinear
transfer (or cascade) of energy from a source to a sink.
In astrophysical plasmas, fully developed turbulence plays
a major role in several physical processes such as accretion
flows around massive objects, star formation, solar wind
heating, or energy transport in planetary magnetospheres
[4–7]. In particular, Earth’s magnetosheath (MS)—the
region of the solar wind downstream of the bow shock
[8]—provides a unique laboratory to investigate compress-
ible plasma turbulence. Indeed, a key feature of the MS
plasma is the high level of density fluctuations in it, which
can reach up to 100% of the background density [9–11], in
contrast to the solar wind, where it is ∼20% [12,13].
Thanks to the high time resolution data provided by the
Magnetospheric MultiScale (MMS) mission in Earth’s MS
[14], we are now able for the first time to measure the
compressible energy cascade rate εC from the magneto-
hydrodynamic (MHD) inertial range down to the subion
scales.
The energy cascade rates can be estimated using

exact laws derived from fluid models which relate, in
the simplest case, the longitudinal structure functions of
the turbulent variables (e.g., the velocity field u or the
magnetic field B) taken in two points, to the spatial
increment l that separates them. The first exact relation

for a plasma was derived by Politano and Pouquet [15,16]
(hereafter PP98): it describes three-dimensional (3D)
incompressible MHD (IMHD) turbulence under the
assumption of statistical homogeneity and isotropy.
This law has been the subject of several numerical tests,
see, e.g., Refs. [17–19]; it has been used for the evaluation
of the incompressible cascade rates in space plasmas
[20–22] (denoted here εIMHD) and the magnetic or kinetic
Reynolds numbers [23], and for the large-scale modeling
of the solar wind [24,25].
The IMHD approximation has been successfully used to

study plasma turbulence at scales larger than the ion inertial
length di (or the Larmor radius ρi) [4,26]. However, at
spatial scales comparable or smaller than di, the ions are no
longer frozen-in to the magnetic field lines because of the
Hall term in the generalized Ohm’s law, e.g., Ref. [8].
Moreover, the incompressibility assumption is likely to fail
to describe subion scales physics: it is theoretically justified
at MHD scales because of the existence of a purely
incompressible Alfvén wave solution. However, that mode
becomes a kinetic Alfvénic wave (KAW) at subion scales,
which is inherently compressible since it carries density
fluctuations [5,27]. A nearly incompressible whistler mode
can develop at high frequency [28], but that mode is
unlikely to dominate the subion scales cascade in the solar
wind or MS [5,29–31]. These considerations emphasize the
crucial need to incorporate density fluctuations in the
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description of the subion scale cascade, as we will show
below using MMS data in the MS.
Following the same methodology as in Ref. [32],

Banerjee and Galtier [33] derived an exact law for
isothermal compressible MHD (CMHD) turbulence.
Recently, Andrés and Sahraoui [34] revisited that work
by providing an alternative derivation of the exact law that
relates the compressible energy cascade rate (hereafter
εCMHD) to four different categories of terms, namely, the
source, hybrid, and β dependent terms, in addition to the
well-known flux terms. Using the model of Ref. [33] and
in situ measurements from the THEMIS spacecraft [35],
Banerjee et al. [36] and Hadid et al. [13] evidenced the role
of density fluctuations in amplifying the energy cascade
rate in the slow wind compared to the fast wind. Hadid
et al. [37] have further found that density fluctuations
reinforce the anisotropy of the energy cascade rate with
respect to the local magnetic field in Earth’s MS, and
evidenced a link with kinetic plasma instabilities. However,
those observational works were limited to the inertial range

and used only some of the flux terms (all the source and the
majority of the hybrid terms could not have been estimated
using single spacecraft data).
In this Letter, we provide the first complete estimation of

the compressible turbulent energy cascade rate in the MHD
inertial range and at the sub-ion scales (εCHall) in a
collisionless plasma. We use the MMS high time resolution
observations made in Earth’s MS and an exact relation
recently derived for compressible Hall-MHD (HMHD)
turbulence [38]. We investigate the impact of the level
of density fluctuations on εCMHD and εCHall by their
comparison to εIMHD and εIHall obtained, respectively, with
incompressible MHD and HMHD theories [15,16,39–41].
Theoretical model.—Using the compressible HMHD

equations [42] and following the usual assumptions for
fully developed homogeneous turbulence (i.e., infinite
kinetic and magnetic Reynolds numbers and a steady state
with a balance between forcing and dissipation [32,43]), an
exact relation for fully developed turbulence can be
obtained [38] as

εC ¼ εCMHD þ εCHall ¼ ðεfluxCMHD þ εnonfluxCMHD Þ þ ðεfluxCHall þ εnonfluxCHall Þ

¼ −
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with, by definition, ρ the mass density, uA ≡B=
ffiffiffiffiffiffiffiffi
4πρ

p
the

compressible Alfvén velocity, ec ≡ c2s logðρ=hρiÞ the in-
ternal energy, cs the local sound speed, Jc ≡ J=en the
compressible electric current, J≡ ðc=4πÞ∇ ×B the current
density, n the ion number density, e the electron charge,
P ¼ c2sρ the pressure, PM ≡ ρu2A=2 the magnetic pressure,
E≡ðρ=2Þðu ·uþuA ·uAÞþρe and H ≡ ρðu · uAÞ are, re-
spectively, the one-point total energy and density-weighted
cross-helicity per unit volume, RE ≡ ðρ=2Þðu · u0 þ
uA · u0

AÞ þ ρe0 and RH ≡ ðρ=2Þðu · u0
A þ uA · u0Þ are their

respective two-point correlation functions, and RB ≡
ðρ=2ÞðuA · u0

AÞ is magnetic energy density. Fields are taken
at point x or x0 ¼ xþ l; in the latter case a prime is added
to the field. The angular brackets h·i denote an ensemble
average [44], which is taken here as time average assuming
ergodicity. We have introduced the usual increments and

local mean definitions, i.e., δα≡ α0 − α and ᾱ≡ ðα0 þ αÞ=2
(with α any scalar or vector function), respectively.
From Eq. (1), one can notice that the compressible

energy cascade rate εC can be split into two components: a
purely MHD component εCMHD (2nd to 5th lines), here-
after, AS17 [34], and a subion one εCHall (6th to 7th lines),
hereafter, AGS18 [38], which corresponds to the terms in
Eq. (1) proportional to Jc. In addition, for each component,
the cascade can be split into two types of terms: a flux term
that can be written as the local divergence of products of
two-point increments and nonflux terms that involve spatial
divergence of the different fields (e.g., u, uA, or ρu). The
flux terms are the usual terms present in exact laws of
incompressible turbulence [15,16]. Assuming isotropy,
these flux terms reflect the nonlinear cascade rate of energy
through scales, while the nonflux terms act on the inertial

PHYSICAL REVIEW LETTERS 123, 245101 (2019)

245101-2



range as a source or a sink for the mean energy cascade rate,
see Refs. [32,34].
Expression (1) is an exact relation describing homo-

geneous, stationary, isothermal, compressible, HMHD tur-
bulence [38]. It generalizes previous laws [15,16,32–34] by
including plasma compressibility, spatial anisotropy, and the
Hall effect. On the one hand, when incompressibility is
assumed, Eq. (1) reduces to the exact law for incompressible
HMHD turbulence with εI ¼ εIMHD þ εIHall, where εIHall is
the contribution of the Hall term, hereafter, F19 [39,41]. On
the other hand, for scales larger than di (MHD limit), the
terms proportional to Jc go to zero and Eq. (1) converges
toward the exact law of CMHD turbulence [33,34].
MMS data selection.—To compute each term in the

right-hand side of Eq. (1), we used MMS spacecraft data in
burst mode [14] and during intervals of time when it was
traveling in Earth’s MS. The magnetic field data and ion
plasma moments were measured, respectively, by the Flux
Gate Magnetometer (FGM) [45] and the Fast Plasma
Investigation (FPI) dual ion/electron sensors (DIS/DES)
[46]. The data sampling time is 150 ms, set by the lowest
sampling rate, i.e., that of the FPI ion sensor [45].
When we use the Taylor hypothesis on space-

craft measurements, the time sampling of the data is
converted into a one-dimensional spatial sampling of the
turbulent fluctuations along the flow direction [13,36,47].
Therefore, we had constructed temporal correlation
functions of the different turbulent fields at different time
lags τ taken within the interval ∼½0.15–300� s, which
allow us to probe into MHD and subion scales. The terms
that include divergence of the fields in Eq. (1) (i.e., the
source, hybrid, and β-dependent terms), see Refs. [34,38],
involve spatial derivatives that were fully computed using
the four multispacecraft data of MMS [48]. The electric
current comes from the ion and electron moments
measured by FPI. The results on the cascade rate were
checked against the current estimates given by the
curlometer technique [49], and no significant difference
was found.
In a large survey of the Cluster data in Earth’s MS,

Huang et al. [11] found that the magnetic field fluctuations
at the MHD scales near the bow shock have generally a
power spectral density (PSD) close to f−1, see also

Ref. [50], whose physics is still largely unknown, while
those that have a Kolmogorov-like spectrum (i.e., f−5=3)
were observed toward the flanks of the magnetopause.
Since this study focuses on turbulence cascade and uses
theoretical models that assume the existence of the inertial
range, we selected only cases that showed a Kolmogorov-
like spectrum in the MHD scales. However, some spectra
showed small bumps near the ion scale, which would
reflect the presence of kinetic instabilities [51]. This aspect
is not investigated in this first work on subion scale
cascade. Our data selection criteria resulted in a total of
72 intervals of ∼300 s each. In particular, Fig. 1 shows the
histograms for (a) the number density, velocity, and
magnetic field fluctuations and (b) the ion βi parameter,
respectively.
Results.—For the selected events, we computed the total

energy cascade rates εC using the exact relation (1) [38].
Figures 2 and 3(c) show two representative examples of
both MHD and subion scales’ contributions to the total
energy cascade rate from the incompressible and com-
pressible exact relations. We emphasize here that we
are only considering the magnitude of the cascade rate
rather than its signed value. The latter requires much
larger statistical samples to ensure statistical convergence
[22,37], which are not yet available to us due to the limited

(a) (b)

FIG. 1. Histogram for (a) the number density, velocity, and
magnetic fluctuations and (b) the ion βi parameter, respectively.

(a)

(b)

(c)

FIG. 2. (a) Magnetic field amplitude (black) and number
density (blue), as a function of time. (b) Magnetic field spectra
compensated by the power laws f (blue) and f5=3 (red), as a
function of the frequency f (solid bold line is the average
spectrum obtained using a sliding window). (c) Energy cascade
rates estimated from incompressible MHD (light blue), incom-
pressible HMHD (orange), compressible MHD (blue), and
compressible HMHD (red), as a function of the time lag τ.
Vertical dash-dotted and dotted gray lines in (b) and (c) corre-
spond to the Taylor shifted ion skin depth and Larmor radius.
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duration of the burst mode on MMS [14]. Signed cascade
rates are relevant to study the direction (i.e., direct vs
inverse) of the energy cascade, which is beyond the scope
of this Letter.
Figures 2, 3(a), and 3(b) show, respectively, the magnetic

field amplitude and number density, and the compensated
PSD for the magnetic energy. While both examples show a
Kolmogorov-like slope at the largest scales, the level of
density fluctuations and its correlation with the magnitude
of jBj are very different. In Fig. 2(a), we observe a
relatively uniform jBj, a clear feature of incompressible
Alfvénic fluctuations [52], in agreement with the finding of
Chen and Boldyrev [53] who analyzed this event: they
found the dominance of Alvénic turbulence at the MHD
scales which transitions into KAW near the ion scales. In
contrast, Fig. 3(a) shows higher fluctuations in the ampli-
tude of the magnetic field, which are anticorrelated with the
density fluctuations. This suggests the dominance of slow-
like magnetosonic turbulence [7,51,54].
This is further demonstrated by quantifying separately

the contribution of incompressible and compressible fluc-
tuations using the energy cascade rate. In Fig. 2(c), we see
that the jεIMHDj and jεCMHDj almost exactly superimpose to
each other at all scales. However, in Fig. 3(c) we observe a
larger value of jεCMHDj compared to jεIMHDj. Typically, this
increase is due to the compressible flux terms, which
include density and internal energy fluctuations [34,55].
While at MHD scales jεCHallj and jεIHallj in Fig. 2(a) behave
similarly, a major difference is observed at subion scales:
jεCHallj is increasingly larger than jεIHallj as one moves
towards small scales. This is in agreement with the idea that
turbulence transitions into KAW turbulence at these scales
[53]. This property is also observed for the case with higher

density fluctuations in Fig. 3 and seems to be a fundamental
property of MS turbulence.
This conclusion is clearly demonstrated in Fig. 4, which

shows the mean ratios jεCHallj=jεIHallj as a function of the
mean ratios jεCMHDj=jεIMHDj obtained for all the 72 events
that resulted from our data selection. We emphasize that
here we considered only cases where the dominant cascade
rate components showed an approximately constant (neg-
ative or positive) sign for all of the time lags in the MHD
and subion ranges to ensure a reliable estimate of its mean
values. The mean values at the MHD and sub-ion scales
were computed over the time lags ∼½50–150� and
∼½0.5–5� s, respectively. At MHD scales we observe in
Fig. 4 that higher density fluctuations lead to increasing
jεCMHDj over jεIMHDj. More importantly, we see that even
when jεCMHDj=jεIMHDj ∼ 1, most of those cases show
higher jεCHallj compared to jεIHallj. For some of them, 1
order of magnitude difference between the two cascade
rates is seen. These statistical results support the idea that
even a small level of density fluctuations could amplify the
energy cascade rate as it goes into the subion scales,
demonstrating the inherently compressible nature of the
MS plasma turbulence at those small scales.
Finally, in Fig. 5 we show the mean ratios in the

subion scales jεnonfluxCHall j=jεCHallj as a function of the mean
ratios in the MHD scales jεnonfluxCMHD j=jεCMHDj obtained for
all the 72 events. Similarly to Figs. 2,3(c), we observe
that the nonflux terms (i.e., the source, hybrid, and β-
dependent [34]) are negligible with respect to the flux

(a)

(b)

(c)

FIG. 3. Same plots as in Fig. 2 but for another time interval.

FIG. 4. Mean ratio of the compressible to incompressible
cascade rates jεCHallj=jεIHallj as a function of the mean ratio
jεCMHDj=jεIMHDj. The color bar indicates the mean relative
density fluctuations per event (72 events are analyzed) in the
MS plasma. The error bars are the corresponding standard
deviation in the MHD and subion ranges. The stars correspond
to cases in Figs. 2 and 3.
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terms. These observational results are also corroborated by
numerical results previously reported in compressible
hydrodynamics and MHD turbulence [55], and in a recent
statistical study of the cascade rate at MHD scales using
MMS data in the MS [56].
Conclusion.—Understanding sub-ion scale turbulence

in space plasmas is a difficult subject because the physics
involves many processes that we still do not fully under-
stand. Notably, a fundamental question remains open as to
how much energy (stirred up at the large scales) leaks
down into the subions, which eventually gets dissipated
(by some kinetic processes) into ion and/or electron
heating? The subsequent question is how much of that
energy comes from the incompressible vs the compressible
components of the turbulence? These are fundamental
plasma physics questions that are relevant to other distant
astrophysical plasmas, e.g., accretion disks of massive
objects [57,58]. In this study, we provide some answers to
these questions using the MMS data in Earth’s MS and a
recent exact law for compressible HMHD, by estimating
the first compressible energy cascade rate at subion scales
in a collisionless plasma and demonstrating the leading
order played by density fluctuations at those scales. The
question as to which kinetic processes dissipates energy
into particle heating cannot be addressed by our fluid
models. Future studies should tackle this problem and the
possible role that kinetic instabilities can play in the
cascade at subion scales.

Data were obtained from Ref. [59].
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