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Frequency-modulated (FM) frequency combs constitute an exciting alternative to generate equidistant
spectra. The full set of Maxwell-Bloch equations is reduced to a single master equation for lasers with fast
gain dynamics to provide insight into the governing mechanisms behind phase locking. It reveals that the
recently observed linear frequency chirp is caused by the combined effects of spatial hole burning, group
velocity dispersion, and Kerr nonlinearity due to asymmetric gain. The comparison to observations in
various semiconductor lasers suggests that the linear chirp is general to self-starting FM combs.
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Optical frequency combs [1,2] are lasers whose spectrum
consists of a set of evenly spaced modes that obey a defined
phase relation. In the time domain, these lasers emit a
signal, which, despite an eventual constant phase drift due
to a nonzero carrier envelope offset frequency, is periodic.
In the literature, frequency combs are mostly linked to
ultrafast lasers that emit short pulses. However, the Fourier
theorem states that a comb spectrum is generated by any
periodic signal, regardless of its shape. A periodic fre-
quency-modulated (FM) signal is another example that
fulfills this criterion. The first studies to generate such a FM
laser output trace back to the 1960s, only a few years after
the demonstration of the first laser [3]. An active intracavity
phase modulator was used to generate FM oscillations in
He-Ne [4] and later in Nd:YAG [5] lasers. Simply from the
similarity of the optical spectra to the Bessel amplitudes, it
was concluded that FM lasers obey a sinusoidal modulation
of the output frequency [6,7] and this picture remained
dominant for over 50 years.

Today, FM combs have experienced a renaissance. In
2012, it was shown that quantum cascade lasers (QCLs)
could be used to generate combs, whose intensity remains
approximately constant [8]. In contrast to the work from the
1960s, the generated FM comb in QCLs is self-starting.
The possibility of generating self-starting combs using the
nonlinearity provided by the gain medium is particularly
appealing for fundamental laser science and the study of
self-organization in complex nonlinear systems, but also of
great interest for many applications. FM combs can be
generated in fast gain media, e.g., QCLs that do not satisfy
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the conditions for passive mode locking [9]. They are self-
starting, requiring no additional components, e.g., saturable
absorbers, which is interesting for comb generation in
interband cascade lasers (ICLs) [10,11]. Both QCLs and
ICLs emit in the midinfrared region, which is particularly
appealing for dual-comb spectroscopy [12,13].

In this Letter, we provide a rigorous theoretical and
numerical study of FM combs that is driven by recent
experimental results [14,15]. A highly optimized simula-
tion tool was developed to reproduce the experimental
results, to identify trends, and to isolate the most relevant
terms in the full set of nonlinear coupled differential
equations. With this knowledge, we derive a simplified
master equation for FM combs. It provides the eagerly
awaited intuitive explanation of the phase locking and
answers the following questions: (i) What triggers self-
organization of the phases in FM combs to overcome
chaos? (i) Why does the linear frequency chirp emerge
from this competition, overcoming other solutions?
(iii) Why do QCL FM combs lock at low group velocity
dispersion (GVD) [16]? (iv) Do FM combs require a fast
gain medium?

QCLs posses fast gain dynamics since their carrier
lifetimes are on the picosecond scale and considerably
shorter than the round-trip time. This is in contrast to the
standard slow gain interband semiconductor lasers with
lifetimes on the order of nanoseconds. The possibility to
generate FM combs with QCLs is mostly explained
through their fast gain dynamics. First, the fast gain
dynamics lead to strong spatial hole burning. Spatial hole
burning originates from the standing wave pattern in the
cavity due to the forward and backward propagating
components of the electric field. This leads to a static
population grating with a period of half the wavelength
[17], which effectively increases the gain for the side
modes, promoting multimode lasing. In fast gain media,
this population grating cannot be washed out efficiently by
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carrier diffusion and its impact is particularly strong.
Second, the fast gain dynamics lead to four-wave mixing
via the occurrence of population oscillations that respond in
antiphase to oscillations of the light intensity [18,19]. A
modulated intensity saturates the gain more than a constant
intensity. Following the maximum emission principle [20],
which was recently identified to be essential for FM comb
formation [21], amplitude modulations will be suppressed
to maximize the output. In fast gain media, this effect is also
particularly strong. It is also the reason why a slow gain
medium is required for pulse generation. There, the
suppression can be compensated and reversed by fast
saturable absorption.

The main issue with this concept is that any phase
arrangement that minimizes amplitude modulations is
equal in energy, which should result in a chaotic phase
modulation [22]. Figure 1(a) shows the corresponding
numerical simulation result, reproducing the expected
pseudorandom multimode operation triggered by spatial
hole burning. Experiments, however, clearly show the
formation of a distinct periodic pattern and the generation
of a frequency comb [14,15]. Figure 1(b) shows the
experimental results of a QCL frequency comb with the
characteristic linear phase pattern that covers the range
from —x to z. Note that we plot the intermodal phases, i.e.,
the phase difference between adjacent modes. This linear
pattern corresponds to parabolic modal phases and a
chirped instantaneous frequency.

The suppression of amplitude modulations can be inter-
preted as repulsive coupling of the intermodal phases. The
occurrence of self-organization in repulsively coupled sys-
tems can also be found in other fields of research, ranging
from splay states in Josephson junctions [24] to cluster states
in complex networks [25]. Such phenomena can be explained
by additional contributions that induce an imbalance to favor
one among many other solutions. Such an imbalance can, for
example, be triggered by a finite GVD, as shown by our
numerical results in Fig. 1(c). This is particularly surprising,
as the experimental observations of FM combs in QCLs were
found in dispersion-compensated cavities.

In the following, we explain why the GVD plays such a
crucial role and indicate which other effects are required to
explain the experimental observations. The starting point is a
system of eight coupled nonlinear differential equations that
describes the manifold physics of a laser. The system is based
on the spatiotemporally resolved Maxwell-Bloch equations
in the slowly varying envelope approximation [26,27], which
includes the effects of GVD and Kerr nonlinearity that have
been mostly omitted previously. The details of the model and
all derivations in textbook style can be found in the
Supplemental Material [23]. While this full model is capable
of a quantitative analysis, it cannot provide an intuitive
understanding of the underlying physics.

Laser models with reduced complexity can yield an
intuitive interpretation. An example is the Haus master
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(a) Simulation of an unlocked laser with both the GVD and Kerr nonlinearity set to zero. (Top) Shows the normalized intensity

spectrum with chaotic intermodal phases. (Bottom) Shows the comparison of the time traces of the normalized output intensity and the
instantaneous normalized frequency emitted by the laser after 100 000 and 150 000 cavity round-trips. They do not match, indicating the
unlocked state. The frequency and time axes are normalized to the round-trip frequency. (b) Experimental results, reprinted from the data
of [15]. (c) Simulated self-phase-locked laser with a nonzero GVD of —1500 fs?/mm, showing the same characteristics as the
experiment: The chirped intermodal phases that cover 2z over the spectral span, as well as the suppressed amplitude modulations and
the linear frequency chirp in the time traces. All numerical simulations are done using Eq. (1) and the parameters are provided in the
Supplemental Material [23], as well as the video of the entire simulation in the case of (a) and (c).
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equation for mode locking with saturable absorbers [9]. Such
models utilize the adiabatic approximation to eliminate
variables, e.g., the induced polarization and carrier popula-
tions. However, with its application, the physics behind FM
combs disappears. In the adiabatic elimination, the response
of these variables is assumed to be instantaneous, which is
equivalent to approximating their transfer function by a
constant, e.g., H(w) = a/(1 + iwT) ~ a. With this, the
information on a remaining small phase delay that can
accumulate over hundreds of round-trips is entirely lost.
In order to recover sufficient information, we use a Taylor
expansion of the form H(w) = a(l — ioT — @*T? - - -). This
yields a single master equation for lasers with fast gain media

n P
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where c is the speed of light, 7 is the refractive index, E+ is
the right and left propagating complex field envelopes, T,
T,, and T, are the recovery times of the gain, polarization,
and population grating, k” is the group velocity dispersion
coefficient, f is the Kerr nonlinearity coefficient, a,, is the
waveguide loss, g(P) = go/(1 + P/Pyy) is the saturated
gain, Py, is the saturation power, and P = |E_|* + |E_|* is
the normalized power. The highlighted terms correspond to
the higher order terms introduced by the Taylor expansion.
The full derivation of the master equation is presented
thoroughly in the Supplemental Material [23] along with
the origin of every term in the equation and its corresponding
physical meaning. While we used the master equation for our
numerical simulations, we will derive now a reduced form to
provide better insight into the most relevant mechanisms.

Aiming for a qualitative explanation of FM combs, we
rewrite Eq. (1) in terms of power and phase E. =
/P exp(i¢p.) and neglect several minor contributions;
e.g., terms with 0,A are smaller than terms with 0,¢. The
reduced master equation for FM combs reads
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Now it will become clear why we introduced the Taylor
expansion (highlighted terms) instead of the adiabatic
elimination. As a frequency modulation is essentially a
modulation of the phase, FM comb operation is mostly
governed by Eq. (3). Without the highlighted terms, the
phase dynamics would be lost and with that also the physics
of FM combs. The first highlighted term in Eq. (3),
proportional to d,¢.., dampens phase oscillations, tending
toward single mode operation. The second highlighted term
proportional to 0, is due to spatial hole burning. It
facilitates multimode operation and is essential for FM
comb operation. Without it, the laser would remain in
single mode. Simulations that support this claim and a more
detailed description of spatial hole burning is provided in
the Supplemental Material [23]. The dispersion term
proportional to (9,¢,)* determines the evolution of the
cumulative phase shape and favors a convex or concave
parabola, depending on the sign of k”. This results in a
chirp in one direction or another. The magnitude of k" is
directly related to the chirp of the intermodal phases. If it is
large enough that the intermodal phases cover the full range
of 2z, the laser can produce a stable periodic output. A
further increase makes the intermodal phases slope steeper,
which requires a narrowing of the spectrum [Fig. 2(b)],
since the range of 2z is fixed. The residual amplitude
modulation present in both the experiments and simulations
(Fig. 1) are mostly due to the second highlighted term in
Eq. (2), which is proportional to P (0,¢.)>.

It is interesting to note that, without the Kerr nonlinearity
(f = 0), the dynamics of FM combs can be described
entirely by just Eq. (3), using the steady-state solution of
Eq. (2), by setting all time derivatives to zero. However, it
remains crucial that the static spatial profile of P is
considered in the spatial hole burning term in Eq. (3).

The situation becomes slightly more complex when
considering an additional Kerr nonlinearity f. In that case,
Egs. (2) and (3) are dynamically coupled. The second
highlighted term in Eq. (2) represents a source term, forcing
P to oscillate in a similar manner. Coupling P, back in
Eq. (3) through the Kerr term, one sees a similar effect as
the GVD, as approximately both are influencing the phase
through a term proportional to (9,¢.)?. Figure 2(a) shows
the numerical simulation of a FM comb generated by a Kerr
nonlinearity with zero GVD. One can observe a slight
bending of the intermodal phases, also present in the
experimental data [Fig. 1(b)].

The Kerr term mostly originates from a change of the
real part of the refractive index with the population
distribution. This is connected to an asymmetric spectral
gain profile and commonly expressed through a nonzero
linewidth enhancement factor (LEF) [18,28]. In the
Supplemental Material [23], we show that, in a fast gain
medium, a finite LEF leads to a considerable Kerr non-
linearity because the gain is tightly coupled to the intra-
cavity field intensity. On the other hand, in a laser with
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FIG. 2.

(a) Simulation of a locked laser in the presence of Kerr nonlinearity (f = —5.6 x 107! m/V?) and zero GVD. A video of the

entire simulation can be seen in the Supplemental Material [23]. (b) Narrowing of the laser spectrum with zero Kerr nonlinearity and
increasing GVD (from 1000 to 3000 fs>/mm) resulting in the increase of the intermodal phases slope, which corresponds to the
decrease of the chirp. Shaded regions indicate the spectral width. In all cases, the phases cover a range of 2z. Below GVD =
1000 fs?>/mm the slope is too small to cover the full phase range of 27 over the spectral span and the laser remains unlocked. (c) Shifting
of the GVD value range required for self-locking, due to a change of the Kerr nonlinearity. (d) Intensity spectrum comparison obtained
from our simulation, experiment (recreated from [7]), and a sinusoidal FM given with the Bessel amplitudes. The comparison of the
second harmonic spectra is shown in the Supplemental Material [23].

longer carrier lifetime (slower dynamics), this coupling is
washed out and the contribution to the Kerr nonlinearity is
weaker. A nonzero Kerr nonlinearity or LEF strongly shift
the range of GVD required for FM comb operation. This
explains why QCL frequency combs have been found close
to zero GVD. Figure 2(c) shows the range of GVD required
to obtain FM comb operation for three different values of
that correspond to realistic values of LEF for QCLs at room
temperature [29]. Altering the shape or width of the gain
changes the required GVD and thus suggests one should
consider this effect in the design of broadband FM combs.
It will be interesting to see if the observed behavior at very
high values of GVD with the continuous narrowing of the
spectrum can also be reproduced in the experiment or, if
above a certain threshold, the laser becomes unlocked again
due to effects neglected in the reduced model. First attempts
of solving the full model for high dispersion again yielded
an unlocked state, but the results remain inconclusive due
to numerical issues that are known from convection-
diffusion problems. A detailed investigation will be part
of future work.

We did not find a reason why FM comb operation should
be strictly limited to fast gain media. In QCLs, with their
fast dynamics, even a small gain asymmetry leads to a
considerable Kerr nonlinearity. In interband semiconductor
lasers, this contribution is attenuated due to the slower

dynamics, but the asymmetry is much more pronounced.
Moreover, dispersion-driven FM comb operation appears to
be independent of the gain dynamics. Hence, we believe
that FM comb operation with a linear chirp is a general
phenomenon. As an example, the presented theory also
explains the experimental observations of self-starting FM
oscillations in an InGaAsP laser diode [7]. The simulated
intensity spectrum with the linear chirp fits the measured
modal amplitudes much better than previously assumed
Bessel amplitudes [Fig. 2(d)]. Our theory is further con-
sistent with observations in experiments on quantum well
[30], quantum dot [31], and quantum dash lasers [32], as
well as numerical simulations [33,34] and recent results on
the demonstration of FM comb operation in interband
cascade lasers [10]. Moreover, by assuming a unidirec-
tional electric field, the derived master equation (1) can be
reduced to the well-known complex Ginzburg-Landau
equation, which is used in many areas of physics [35],
potentially making the impact of this Letter even broader.

In conclusion, we provided detailed insights into the
formation of frequency combs in single section lasers
without saturable loss. Going beyond the adiabatic approxi-
mation, we derived a master equation to explain the physics
and identified the most relevant contributions. In accor-
dance with this, a FM comb requires spatial hole burning to
trigger multimode operation, gain saturation to suppress
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amplitude modulation, and a minimum, but finite contri-
bution from the GVD or Kerr nonlinearity due to gain
asymmetry that gives rise to a chirped output. A minimum
amount is required such that the intermodal phases can
cover a range of 2z over the spectral span to suppress
amplitude modulations. Further increase will enforce a
narrowing of the spectrum. The presented theory is capable
of explaining experimental observations in various types of
semiconductor lasers. Furthermore, while the Kerr non-
linearity contribution from the gain asymmetry depends on
the laser dynamics, the value of the GVD absolutely does
not show such a dependency, indicating that the linear chirp
is a general phenomenon behind the nature of FM combs in
semiconductor lasers.
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