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We show how to derive a consistent quantum theory of radiation reaction of a nonrelativistic point-dipole
quantum oscillator by including the dynamical fluctuations of the position of the dipole. The proposed
nonlinear theory displays neither runaway solutions nor acausal behavior without requiring additional
assumptions. Furthermore, we show that quantum (zero-point) fluctuations of the electromagnetic field are
necessary to satisfy the second law of thermodynamics. Our results are obtained by developing a
nonperturbative technique involving a weak-coupling approximation at the level of the effective action.
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A long-standing fundamental problem in electrodynam-
ics is the appearance of runaway and acausal solutions in
the dynamics of a moving point charge interacting with its
radiated electromagnetic field [1–3]. The so-called radia-
tion reaction problem can be illustrated by the theory of a
nonrelativistic point-dipole quantum oscillator interacting
with the electromagnetic field, whose dynamics is
described by the Hamiltonian

Ĥ0 ¼ 1

2m0 ½p̂ − qÂðRÞ�2 þ 1

2
κr̂2 þ ĤEM: ð1Þ

Here,m0 (q) is the bare mass (charge) of the electron, qr̂ the
dipole moment operator, κ the observed spring constant of
the point-dipole quantum oscillator, ÂðRÞ the potential
vector operator evaluated at the position of the dipole R
(assumed to be fixed), and ĤEM the Hamiltonian describing
the dynamics of the free electromagnetic field. Note that
Eq. (1) corresponds to the Lorentz-oscillator model for an
electron in an atom within the long-wavelength approxi-
mation. From this Hamiltonian, one can readily show [1,3]
that the dynamics of the dipole moment degrees of freedom
(d.o.f.) rðtÞ ¼ hr̂ðtÞi is given by the Abraham-Lorentz [4,5]
equation

m̈rðtÞ þ κrðtÞ −mγ r
…ðtÞ ¼ 0; ð2Þ

where m is the observed mass of the electron, and γ ¼
2q2=ð3mÞ the radiation reaction damping constant.
Hereafter natural units are used. The Abraham-Lorentz
equation is local in time (Markovian) and in the Fourier
space reads ðω2 − ω2

0 þ iγω3ÞrðωÞ ¼ 0, where ω2
0 ≡ κ=m

and rðtÞ ¼ ð2πÞ−1=2 R dωe−iωtrðωÞ. The radiation reaction
problem, that is, the existence of runaways and pre-
accelerations, is apparent in the existence of a purely

imaginary root of the characteristic polynomial ω2 − ω2
0 þ

iγω3 with positive imaginary part. Historically, the radia-
tion reaction problem is circumvented by either (i) consid-
ering the charge to be extended over a sphere of radius
larger than γ [1,6,7], (ii) assuming the weak-coupling
regime such that one approximates the pathological term
mr

…ðtÞ ≈ −κ_rðtÞ [1,8], or (iii) imposing an ultraviolet
frequency cutoff in the spectrum of the free electromagnetic
field [3,9].
In this Letter, we show that by simply promoting the

position of the dipole R to a dynamical quantum d.o.f. R̂,
one obtains, without further requirements, a consistent
quantum theory that does not display the radiation reaction
problem. That is, we describe the radiation reaction of a
dipole using the extended Hamiltonian

Ĥ ¼ Ĥ0 þ P̂2

2M
þ VðR̂Þ; ð3Þ

where P̂ is the conjugate momentum operator of the dipole
position operator R̂, M the total observed mass of the
dipole, and V an external potential for the dipole position
d.o.f. By replacing R → R̂ in Eq. (1), Ĥ contains a
threefold coupling term between the electromagnetic field,
the dipole moment associated to the motion of the bounded
electron, and the center-of-mass position of the dipole. In
the electric dipole representation, this coupling term reads
qr̂ · ÊðR̂Þ, where Ê is the electric field operator. We show
how to trace out the electromagnetic field and the center-of-
mass d.o.f. in order to get an effective dynamical equation
for the dipole moment d.o.f. r̂ðtÞ. We assume that the center
of mass of the dipole does not move on average,
hR̂ðtÞi ¼ 0, but does fluctuate, hR̂2ðtÞi ≠ 0. Our analytical
procedure leads to a dynamical equation that amends the
Abraham-Lorentz Eq. (2) and does not suffer from the
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radiation reaction problem. The amended dynamical equa-
tion leads to Eq. (2) in the limitM → ∞, that is, if the center
of mass does no longer fluctuate. Furthermore, we show
within the developed theory that the zero-point quantum
fluctuations of the electromagnetic field are necessary to
satisfy the second law of thermodynamics [10].
In the following, we sketch the derivation of our

result using the closed-time-path (CTP) formalism and
the influence functional method with path integrals [11].
The detailed derivation can be found in the Supplemental
Material [12]. The starting point of the theory is the action
of the closed total system, which in the electric dipole
representation is given by

S½R; r; Aμ� ¼ SCM½R� þ S0Dip½r� þ SEM½Aμ� þ SInt½R; r; Aμ�:
ð4Þ

We use the electromagnetic four-potential Aμ ¼ ðϕ;AÞ.
The first three terms are the actions describing the free
dynamics of the subsystems. The action of the dipole center
of mass is

SCM½R� ¼
Z

tf

tin

dλ

�
M
2

_R2ðλÞ − V½RðλÞ�
�
: ð5Þ

The action of the dipole internal d.o.f. is

S0Dip½r� ¼
Z

tf

tin

dλ

�
m
2
_r2ðλÞ − κ0

2
r2ðλÞ

�
; ð6Þ

where κ0 is the bare spring constant of the dipole [13]. The
action of the free electromagnetic field is

SEM½Aμ� ¼ 1

2

Z
d4x½E2ðxμÞ −B2ðxμÞ�; ð7Þ

where B is the magnetic field. We have used the four-
vector coordinate xμ ¼ ðx0;xÞ and the notation

R
d4x ¼R tf

tin dx
0
R
dx. The fourth term in Eq. (4) accounts for the

threefold interaction between the jiggling point dipole and
the electromagnetic field and is given by

SInt½R; r; Aμ� ¼ q
Z

tf

tin

dλrðλÞ ·E½RμðλÞ�; ð8Þ

where RμðλÞ ¼ ðλ;RðλÞÞ. The initial state of the total
system is assumed to be the product state ρ̂ðtinÞ ¼
ρ̂CM ⊗ ρ̂Dip ⊗ ρ̂EM.
The goal is to obtain the effective equation of motion for

the dipole internal d.o.f. r̂ under the influence of the
electromagnetic field and the fluctuations of its center-
of-mass position. For this purpose, we trace out first the
electromagnetic field and subsequently the center-of-mass
d.o.f. The first step benefits from the fact that the depend-
ence on the electric field in Eq. (8) is linear. The functional
integrals that are required to trace out the electromagnetic

field within the CTP formalism can be analytically calcu-
lated by assuming the initial state of the electromagnetic
field to be Gaussian (e.g., thermal state at temperature
T ¼ β−1), see Refs. [12,14,15].
The second step, namely, tracing out the center-of-mass

d.o.f., is more involved due to its nonlinear dependence in
Eq. (8). We develop a nonperturbative approximation
technique based on expanding the influence functional in
powers of q. We perform the functional integrations over
the center of mass in the first term of the series. Then,
having a formal expression for the influence action, we
show that the first order expansion in the coupling
corresponds to retain on the dynamics the contribution
coming from the nth power of this first term. A perturbative
expansion at the level of the action implies a nonperturba-
tive approximation on the dynamics. Within the quantum
theory of many-particle system with Green’s functions, this
technique resembles a first-order approximation in the self-
energy of an interacting system, which implements a
nonperturbative approximation for the interacting system
[16]. This procedure allows us to obtain a quadratic
influence action for the dipole internal d.o.f., which gives
a CTP action of the form SCTP½r; r0� ¼ SDip½r� − SDip½r0�þ
Sð1ÞRR½r; r0�. Here, SDip has the same form as Eq. (6), but with
the observed (renormalized) spring constant κ0 → κ. The

influence action Sð1ÞRR accounts for the dynamics of both the
electromagnetic field and the dipole center-of-mass motion.

Although Sð1ÞRR is quadratic, its form is different from what
one obtains for standard dissipative environments (e.g.,
Brownian motion [8,17]). Our problem contains a threefold
nonlinear coupling that leads to a complicated influence
action that becomes quadratic after the nonperturbative
method. We remark that this scenario and approach is
different from perturbative techniques applied to twofold
nonlinear interactions [18].
The final step is to obtain the equation of motion for the

dipole internal d.o.f., which is done by minimizing the CTP
action, namely, ðδSCTP=δrÞjr0¼r ¼ 0 [11]. This leads to the
main result of this Letter, namely, the amended Abraham-
Lorentz equation

m̈rðtÞ þ κrðtÞ − 2mγ

Z
t

tin

dt0Dðt − t0Þrðt0Þ ¼ 0; ð9Þ

where the memory function is given by

DðτÞ¼
Z

∞

0

dω
ð2πÞ2ω

3exp

�
−ω2

2
Δ2ðτÞ

��
cos

�
ω2

2
GðτÞ

�

×Re½Γðω;τÞ�þ2sin

�
ω2

2
GðτÞ

�
Im½Γðω;τÞ�

�
: ð10Þ

We use τ ¼ t − t0. The memory function includes the
effect of the coupling to the electromagnetic field via the
function
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Γðω; τÞ≡ θðτÞ sinðωτÞ þ i
2
coth

�
βω

2

�
cosðωτÞ; ð11Þ

where θðτÞ is the Heaviside step function. The imaginary
part of Eq. (11) accounts for the fluctuations of the
electromagnetic field, where cothðβω=2Þ ¼ 1þ 2n̄ðβωÞ
separates the quantum (zero-point) fluctuations from the
classical (thermal) fluctuations. The effect of the center-of-
mass fluctuations is included in the memory function
via the functions Δ2ðt − t0Þ≡ trðρ̂CM½R̂jðtÞ − R̂jðt0Þ�2Þ
and Gðt − t0Þ ¼ iθðt − t0Þtrð½R̂jðtÞ; R̂jðt0Þ�Þ, which are in-
dependent of the axis of motion j and only depend on the
time difference for dynamics described by isotropic and
quadratic Hamiltonians. Moreover, G is state independent
in this case.
The amended Abraham-Lorentz Eq. (9) contains several

features originating from the nonlinear threefold coupling in
Eq. (8). On the one hand, the equation is non-Markovian
with a memory function given by Eq. (10). This is due to the
participation of the center of mass in the dipole moment
dynamics via the threefold nonlinear coupling that generates
delays through the energy exchange between the subsys-
tems. Indeed, in the limitM → ∞, the functionsΔ,G vanish
and Dðt − t0Þ → −∂3δðt − t0Þ=∂t03. Therefore, in the fixed-
dipole limitM → ∞, Eq. (9) leads to the Abraham-Lorentz
equation Eq. (2). On the other hand, the damping perceived
by the dipole moment depends on the state of the electro-
magnetic field, namely, its temperature, which is a new
feature in the radiation reaction scenario. Furthermore, the
super-Ohmic nature of the electromagnetic field is not
altered, as shown by the presence of the factor ω3 in the
memory function Eq. (10). However, the function
exp½−ω2Δ2ðt − t0Þ=2� in Eq. (10) acts as a cutoff to the
frequency integral since Δ2ðt − t0Þ ≥ 0 for any t − t0 ≥ 0.
This is a natural cutoff provided by the center-of-mass
fluctuations that prevents the localization of the integral in
time, similarly to what is achieved by assuming an ultra-
violet frequency cutoff in the electromagnetic field [3,9].
In order to show that the amended Abraham-Lorentz

equation (9) is free from the radiation reaction problem, it is
convenient to write Eq. (9) in Fourier space as

½ω2 − ω2
0 þ iωμðωþ i0þÞ�rðωÞ ¼ 0: ð12Þ

Here, the spectral distribution function μðωþ i0þÞ is
defined as the boundary value on the real axis of the
function μðzÞ≡2γðizÞ−1R∞

0 dðt−t0ÞDðt−t0Þeizðt−t0Þ, where
we have chosen tin → −∞. In this form, one can use the
results of Ford, Lewis, and O’Connell (FLO) [10] to show
that if μðzÞ is a positive real function, then the following
three general physical principles are fulfilled: (i) causality,
which requires μðzÞ to be analytical in the upper half plane
Im½z� > 0, (ii) the second law of thermodynamics, which
enforces the real part of the spectral distribution to be

positive Re½μðωþ i0þÞ� ≥ 0 in all the real axis, and (iii) that
r̂ is Hermitian, which requires μðωþi0þÞ¼½μð−ωþi0þÞ��.
Note that the Abraham-Lorentz equation Eq. (2) does not
fulfill the FLO criteria [3,9], which is another manifestation
of the radiation reaction problem. In contrast, we show in
the following that the amended Abraham-Lorentz Eq. (9)
does fulfil the FLO criteria when the initial states of the
center of mass and the electromagnetic field have the same
temperature.
In particular, we analytically show that the FLO criteria

is met for the paradigmatic case of a free dipole [VðRÞ ¼ 0]
with an initial motional state ρ̂CM given by a thermal state in
a harmonic potential of frequency ωI. This choice is crucial
in order to have the dipole interacting with an environment
(the electromagnetic field and the center-of-mass motion) at
thermal equilibrium. Under this assumption FLO criteria
(ii) is applicable. Such an initial Gaussian state is deter-
mined by hR̂iðtinÞi¼hP̂iðtinÞi¼hfR̂iðtinÞ;P̂iðtinÞgi¼0, and
the initial thermal fluctuations hR̂2

i ðtinÞi¼½2n̄ðβωIÞþ1�=
ð2ωMωIÞ and hP̂2

i ðtinÞi ¼ ½2n̄ðβωIÞ þ 1�ωMωI=2, where
ωM ≡M is the Compton frequency. We denote the ratio
between the two relevant frequencies describing the center-
of-mass dynamics as χ ≡ ωI=ωM. With the center of mass
of the dipole being in this initial thermal state, its mean
position does not evolve within the free dynamics described
by the action Eq. (5) with VðRÞ ¼ 0, but it does fluctuate.
The thermal wave packet spreads, and this dynamics leads
to the following particular expressions for Δ2ðt − t0Þ ¼
½2n̄ðβωIÞ þ 1�ðt − t0Þ2ωI=ð2ωMÞ and Gðt − t0Þ ¼
θðt − t0Þðt − t0Þ=ωM. By plugging these functions into
Eq. (10), which represent the influence that the center-
of-mass d.o.f. exerts on the dynamics of the dipole moment
d.o.f., one can obtain an expression for μðzÞ. It can be
written as

μðzÞ ¼ iμ0
πz

Z
∞

0

dxx2
Z

∞

−∞
dy

uðx; yÞ
yþ z=ωI

: ð13Þ

Here, we have defined the positive constant μ−10 ≡
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π3χ cothðβωI=2Þ

p
=ðγω2

I Þ and the function uðx; yÞ ¼
Kþðx; yÞ þ n̄ðβωIxÞ½Kþðx; yÞ þ K−ðx; yÞ� with

K�ðx; yÞ ¼ exp

�
−
ðy� xþ χx2=2Þ2
χx2 cothðβωI=2Þ

�

− exp

�
−
ðy ∓ x − χx2=2Þ2
χx2 cothðβωI=2Þ

�
: ð14Þ

The spectral distribution μðωþ i0þÞ can be calculated from
Eq. (13) using the distribution identity i=ðxþ i0þÞ ¼
iPð1=xÞ þ πδðxÞ. One can then readily prove that
Eq. (13) meets the FLO criteria by showing that (i) the
Cauchy-Riemann equations in the upper half plane are
fulfilled for any nonzero value of M, (ii) the integrand of
the real part of the spectral distribution is positive for any
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value of χ and β (see Supplemental Material [12] for further
details), and (iii) the real (imaginary) part of the spectral
distribution is symmetric (antisymmetric) with respect to ω.
In accordance with the FLO criteria [3,9], the amended
Abraham-Lorentz equation (9) is causal, does not contain
runaway solutions, and is consistent with the second law of
thermodynamics. While this result has been explicitly (and
analytically) shown for the paradigmatic case of a free
dipole, it is expected to hold for other center-of-mass
dynamics [e.g., assuming VðRÞ is a harmonic potential].
To conclude the discussion of the results, let us turn to a

subtle but intriguing observation. At finite temperatures,
one could be tempted to ignore the quantum (zero-point)
fluctuations of the electromagnetic field, in particular since
the radiation reaction problem is known to appear also in a
classical description of a radiating particle [2]. The effect
of the fluctuations of the electromagnetic field is encoded in
the term of the memory function Eq. (10) which contains
the function Im½Γðω; τÞ� ¼ cothðβω=2Þ cosðωτÞ=2. This
function can be separated into two terms via cothðβω=2Þ ¼
1þ 2n̄ðβωÞ. The first term accounts for the quantum (zero-
point) fluctuations and the second term for the classical
(thermal) fluctuations. Ignoring the quantum (zero-point)
fluctuations, namely, considering a stochastic classical
theory for the electromagnetic field, would result in an
amended Abraham-Lorentz equation with the same form as
Eq. (9), but with a memory function Eq. (10) that contains a
modified Γ function given by Γcðω; τÞ ¼ θðτÞ sinðωτÞþ
i cosðωτÞ=ðβωÞ, as opposed to Eq. (11). The Fourier
transform of this modified memory function reads as
Eq. (13) but with a modified uðx; yÞ function given by

ucðx; yÞ ¼
1

2
½Kþðx; yÞ − K−ðx; yÞ�

þ 1

βωIx
½Kþðx; yÞ þ K−ðx; yÞ�: ð15Þ

One can then readily show that while the FLO criteria (i)
and (iii) are still fulfilled, and the theory thus maintains
causality, there is a broad range of parameters χ and β for
which the FLO criterion (ii) is not fulfilled (see Supple-
mental Material [12] for further details). Therefore, the
quantum (zero-point) fluctuations of the electromagnetic
field are necessary to have a theory that is consistent with
the second law of thermodynamics. In other words, a
radiation reaction theory for a dipole that includes its
center-of-mass dynamics would be causal but to be
physically consistent, the quantum (zero-point) fluctuations
of the electromagnetic field have to be accounted for in
order to respect the second law of thermodynamics. We
remark that this observation is only pertinent for a moving
dipole. In the fixed-dipole limit M → ∞, the term in the
memory function Eq. (10), which contains the relevant
function Im½Γðω; τÞ� distinguishing classical versus quan-
tum fluctuations of the electromagnetic field, vanishes.

In summary, in this Letter we have provided an amended
Abraham-Lorentz theory for a point-dipole quantum oscil-
lator that is physically consistent and it can be derived from
nonrelativistic quantum electrodynamics without additional
assumptions. The crucial point to circumvent the long-
standing radiation reaction problem for the case of a
charged harmonic oscillator is to account for the center-
of-mass d.o.f. of the point dipole. In this context, we have
shown that the quantum (zero-point) fluctuations of the
electromagnetic field are crucial to obtain a physically
consistent theory, even at finite temperatures, since other-
wise the theory would violate the second law of thermo-
dynamics. From a technical point of view, accounting for
the center-of-mass dynamics renders the electrodynamical
problem of a point-dipole quantum oscillator interacting
with the electromagnetic field nonlinear. We were able to
obtain analytical results by using path integral techniques
[11], which are proven to be very well suited to this
problem. In particular, we developed a nonperturbative
approximation assuming weak coupling at the level of the
action.
Furthermore, our results open new research directions.

While we have here focused on the effective dynamics of the
dipole moment d.o.f., it should be possible to use similar
techniques to describe the effective dynamics of the center-
of-mass d.o.f. In particular, it might be feasible to obtain a
consistent theory that describes the equilibration of the center
ofmass of a dipole interactingwith a thermal electromagnetic
field, a long-standing open question originally discussed by
Einstein and Hopf [19,20]. Furthermore, while we have
shown how to circumvent the radiation reaction problem of a
point dipole by including additional d.o.f., one could inves-
tigate whether the same can be achieved for a moving free
point charge (e.g., an electron) by including spin d.o.f. Last
but not least, it would be very exciting to explore whether
such fundamental questions can be addressed experimentally
with the new generation of experiments trapping atoms and
dielectric nanoparticles in high vacuum near photonic nano-
structures, where large light-matter couplings can be engi-
neered, as a complement to the recent radiation reaction
experiments with high energy electrons [21–23].
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