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I consider quantum electrodynamics with many electrons in 2þ 1 space-time dimensions at finite
temperature. The relevant dimensionless interaction parameter for this theory is the fine structure constant
divided by the temperature. The theory is solvable at any value of the coupling, in particular for very weak
(high temperature) and infinitely strong coupling (corresponding to the zero temperature limit).
Concentrating on the photon, each of its physical degrees of freedom at infinite coupling only contributes
half of the free-theory value to the entropy. These fractional degrees of freedom are reminiscent of what has
been observed in other strongly coupled systems (such as N ¼ 4 supersymmetric Yang-Mills theory), and
bear similarity to the fractional quantum Hall effect, potentially suggesting connections between these
phenomena. The results found for (2þ 1)-dimensional QED are fully consistent with the expectations from
particle-vortex duality.
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Introduction.—Quantum electrodynamics (QED) is one
of the most successful theories in physics. Describing the
interaction of matter and light, it is extremely well tested,
achieving agreement with experiment on the parts-per-
billion level, for instance, for the anomalous magnetic
moment of the electron [1]. Theory solutions to QED in
three space and one time dimensions (QED4) are typically
obtained by calculating a perturbative series in the fine
structure constant α. For comparison to experimental
results such as those in Ref. [1], this strategy is perfectly
adequate since the fine structure constant in natural units is
α ≃ ð1=137Þ, so that power corrections of α are small.
However, it has been argued that the perturbative series

for QED4 is divergent [2], implying that the theory
becomes ambiguous at very high values of α. Therefore,
unfortunately, QED4 does not seem to be a suitable
candidate if wanting to study a theory that is well-defined
also in the limit of very strong (infinite) coupling.
Fortunately, QED does become well defined if one is

willing to reduce the number of space dimensions to two. In
this (2þ 1)-dimensional “flatland” case, (2þ 1)-dimen-
sional QED is still formally defined by the same
Lagrangian as its successful cousin QED4, but is appa-
rently well behaved for any interaction strength. In par-
ticular, when considering massless QED3 in the limit of
many electrons, QED3 becomes an interesting solvable
theory to study, as has been the case for many years,

cf. Refs. [3–6]. One of the main differences with respect to
QED4 is that the fine-structure constant α becomes dimen-
sionful. Absent any mass scale, the only dimensionless
coupling for QED3 is thus the ratio of α and temperature,
λ≡ ðα=TÞ. It is possible to use units where α ¼ 1, such that
the weak coupling regime λ ≪ 1 corresponds to the high
temperature limit, and conversely the strong coupling
regime λ ≫ 1 corresponds to the zero temperature limit.
This is a common feature of pure conformal field theories in
2þ 1 dimensions, see, e.g., the discussion in Ref. [7].
QED3 in the large number of electrons and large coupling

limit λ → ∞ is a strongly coupled gauge theory with many
components. The conjectured duality of strongly coupled
gauge theories and gravity [8] opened up the possibility of
studying certain gauge theories in the large number of
component and large coupling limit by mapping them to
classical gravity. While QED3 does not have a known
gravity dual, it is nevertheless interesting if some of the
features found for holographic theories could be understood
or recovered by performing calculations purely on the field
theory side at strong coupling. This provides further
motivation to study QED3 with many electrons.
Calculation.—The Euclidean action for QED in 2þ 1

dimensions with Nf electrons is given by [9]

SE ¼
Z

dDx

�
1

4
FμνFμν þ ψ̄aγμð∂μ − ieAμÞψa

þ 1

2ξ
ð∂μAμÞ2 þ ∂μc̄∂μc

�
; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the photon field strength
tensor, Aμ is the U(1) gauge field, ψa with a ¼
1; 2; 3;…; Nf are massless Dirac fields and c̄, c are the
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Faddeev-Popov ghosts. Here ξ is the gauge-fixing param-
eter in the class of covariant gauges considered,D ¼ 3 − 2ϵ
is the dimension of the field theory with ϵ ≥ 0 in dimen-
sional regularization, γμ are the Euclidean version of the
Dirac γ matrices, and the relation of the coupling e to the

fine structure constant for Nf electrons is taken to be
α≡ ðe2Nf=4πÞ. Note SE is invariant under BRST
(Becchi-Rouet-Stora-Tyutin) transformations.
In the large Nf limit, the only contribution to the photon

polarization tensor arises from the fermion loop,

ΠμνðPÞ ¼ −16παT
X
n

Z
dD−1k
ð2πÞD−1 ½δμνðK2 − P · KÞ

− 2KμKν þ KμPν þ KνPμ�½K2ðK − PÞ2�−1;

where K ≡ ðω̃n;kÞ and ω̃n ¼ 2πTðnþ 1
2
Þ with n ∈ Z are

the fermionic Matsubara modes. In the zero temperature
limit, evaluation of Πμν can be found in many textbooks
on quantum field theory, with the only change being
D ¼ 4 − 2ϵ → 3 − 2ϵ [3]:

ΠT¼0
μν ðPÞ ¼ απ

2

�
δμν −

PμPν

P2

� ffiffiffiffiffiffi
P2

p
: ð2Þ

At finite temperature, the presence of a preferred rest frame
introduces an additional vector nμ ≡ ð1; 0; 0Þ, adding new
tensor structures that Πμν can be decomposed in. Defining
ñμ ≡ nμ½δμν − ðPμPν=P2Þ� one finds that

ΠμνðPÞ ¼ ΠA

�
δμν −

PμPν

P2
−
ñμñν
ñ2

�
þ ΠB

ñμñν
ñ2

; ð3Þ

where for high temperature ΠA;B may be evaluated ana-
lytically in the hard thermal loop approximation [10] or
numerically.
The partition function for QED3 may be evaluated in the

path-integral approach as

Z ¼
Z

DADψ̄DψDc̄Dce−SE: ð4Þ

The fermions are unmodified, contributing

Zfermions ¼
Y
K

det ½iγμKμ�Nf ¼
Y
K

det ½K214×4�Nf=2;

¼ e2NfV
P

w̃

R
½dD−1k=ð2πÞD−1� lnK2

; ð5Þ

with V the “volume” of 2-dimensional space. Similarly, the
ghosts, being Grassmann fields obeying periodic boundary
conditions give

Zghosts ¼ eV
P

w

R
½ðdD−1kÞ=ð2πÞD−1� lnK2

: ð6Þ

The photon, being dressed by the polarization tensor Πμν,
gives rise to

Zphoton ¼ e−ðV=2Þ
P

w

R
½ðdD−1kÞ=ð2πÞD−1� ln ½ðK2þΠAÞðK2þΠBÞðK2=ξÞ�;

ð7Þ

with ξ again the gauge-fixing parameter that appeared
in SE.
The partition function defines the free energy density

f ≡ −
T
V
lnZ; ð8Þ

at finite temperature. Basic thermodynamic relations then
allow calculation of the entropy density as

s≡ −
∂f
∂T : ð9Þ

For instance, the free energy density for the fermions is
given by

ffermion ¼ −
T
V
lnZfermion

¼ −4NfT
Z

dD−1k
ð2πÞD−1 ln ð1þ e−k=TÞ; ð10Þ

where I have performed the fermionic Matsubara sum
and used the fact that divergent integrals without any
inherent scale vanish in dimensional regularization, e.g.,R ½dDk=ð2πÞD� ln K2 ¼ 0. The remaining integral is finite
so that the limit D → 3 may be taken. This leads to
ffermion ¼ −½3Nfζð3ÞT3=ð2πÞ� or an entropy density for
the 4Nf fermionic degrees of freedom (d.o.f.) of

sfermion ¼ −
∂ffermion

∂T ¼ 9Nfζð3ÞT2

2π
: ð11Þ

Similarly, the entropy density for the ghosts becomes

sgh ¼
∂
∂T

�
2T

Z
d2k
ð2πÞ2 ln ð1 − e−k=TÞ

�
¼ −

3ζð3ÞT2

π
:

ð12Þ
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Finally, the free-energy contributions for the photon have
the form

f ¼ T
2

X
ω

Z
dD−1k
ð2πÞD−1 ln ½ω2

n þ k2 þ Πðωn; kÞ�: ð13Þ

For completeness, note that when Π can be neglected, this
gives rise to the entropy density of a single bosonic d.o.f. in
2þ 1 dimensions

sfree ¼ −
∂
∂T

�
T
Z

d2k
ð2πÞ2 ln ð1 − e−k=TÞ

�
¼ 3ζð3ÞT2

2π
:

ð14Þ

Fractionalization of photon d.o.f. in QED3.—Inspecting
Eq. (7), the photon field at finite temperature has three d.o.f.
Let’s call them “A,” “B,” and “C.” Not all of these d.o.f. are
physical. In modern quantum field theory formalism, this
comes about by the contribution from the Faddeev-Popov
ghost [Eq. (6)], which is negative, and amounts to sub-
tracting two bosonic d.o.f.
One d.o.f. from the ghosts exactly cancels one d.o.f. from

the photon field (“C”), whereas the other ghost contribution
only partially cancels one of the photon contributions
because the photon acquires an in-medium mass and width.
In QED3 in the limit of many electrons Nf ≫ 1, this can be
made exact by calculating the entropy density (entropy per
“volume”) of photons and ghosts,

sA þ sB þ sgh ¼ −
∂
∂T

T
2

X
n

Z
d2k
ð2πÞ2 ln

�ðω2
n þ k2 þ ΠAÞðω2

n þ k2 þ ΠBÞ
ω2
n þ k2

�
; ð15Þ

cf. Refs. [11,12]. In Eq. (15), ΠAðωn;kÞ and ΠBðωn;kÞ are
the in-medium photon polarizations of photon d.o.f. “A”
and “B,” respectively, and the contribution from the ghost
d.o.f. can be identified as residing in the denominator inside
the logarithm. The divergent integral in Eq. (15) is to be
understood in the sense of dimensional regularization, as is
standard in quantum field theory.
Let us study the contribution of a single photon d.o.f. to

the entropy,

s ¼ −
∂
∂T

�
T
2

X
n

Z
d2k
ð2πÞ2 ln fω

2
n þ k2 þ Πðωn;kÞg

�
:

ð16Þ

At weak coupling (high temperature) ðα=TÞ → 0, the
photon polarizations become small, ΠA;B → 0 and the
entropy density is given by Eq. (14).
Conversely, in the limit of strong coupling (zero temper-

ature) ðα=TÞ → ∞, the polarization tensor components are
found to be given by Eq. (2), such that each photon d.o.f.
contributes

sstrong ¼ −
∂
∂T

�
T
2

X
n

Z
d2k
ð2πÞ2 ln

�
απ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ k2

q ��
:

¼ 3ζð3ÞT2

4π
¼ sfree

2
: ð17Þ

(Careful readers may object that in-medium pieces for ΠA;B

could be expected to contribute in the naive Nf → 0 limit.
However, for sufficiently large, but finite Nf, the naive
Πmedium ∼ αT behavior is expected to get modified to
Πmedium ∼ αTðT=αÞ#=Nf , where # is a number that requires
nonperturbative evaluation, cf. Refs. [3,4], effectively

suppressing these in-medium corrections.) Thus, each
photon d.o.f. at infinite coupling contributes only a fraction
(1
2
) of the noninteracting value to the entropy. As a

consequence, the total entropy density [including the
leading OðNfÞ contribution from the electrons] becomes

sQED3;strong ¼
9Nfζð3ÞT2

2π
þ 0þOðN−1

f Þ; ð18Þ

since sA þ sB þ sgh ¼ 0 for ðα=TÞ → ∞. Because the two
“fractionalized” photon d.o.f. cancel against the remaining
ghost contribution, the entire OðN0

fÞ contribution to the
entropy vanishes, and the photon effectively has disap-
peared. Put differently, as far as d.o.f. contributing to the
entropy are concerned, QED3 in the strong coupling limit
becomes a theory of Nf “emergent” noninteracting Dirac
fermions. Note that this is strikingly similar to expectations
from particle-vortex duality for Nf ¼ 1 “cousins” of QED
considered in Refs. [13,14] (see also Ref. [15] for a
proposal of particle-vortex duality for Nf ≫ 1.)
Note that this curious “fractionalization” of the photon

contribution to the entropy comes about even though the
photon dispersion relation, calculated as the solution of
−ω2 þ k2 þ ðαπ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2 þ k2

p
¼ 0 on the principal

Riemann sheet, is linear,

ω ¼ �jkj; ð19Þ

so the photon remains massless with zero width in the zero-
temperature limit.
Fractionalization in other quantum field theories and

discussion.—Similar fractionalizations in the number of
d.o.f. for quantum field theories at infinite coupling have
been reported before. For instance, using the conjectured
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gravity dual, the total entropy in N ¼ 4 super Yang-Mills
theory (SYM, containing gauge fields, scalars and fer-
mions) for infinite coupling and large N has been found to
be exactly 3

4
that of the free theory value [16]. SinceN ¼ 4

SYM theory is only solvable at infinite coupling through its
conjectured gravity dual, this 3

4
fraction (and how it may

come about as possible fractionalization of the individual
gauge, scalar and fermionic d.o.f.) is as yet unexplained.
For the bosonic O(N) model in 2þ 1 dimensions a ratio

of 4
5
was found [17–19]. The fractionalization of the N

scalar d.o.f. is realized through a finite in-medium mass
Π ∝ const. at infinite coupling that happens to be twice the
logarithm of the golden ratio. Thus, the dispersion relation
for the scalars in the strongly interacting O(N) model is
modified, unlike the photon in QED3, cf. Eq. (19).
In the supersymmetric O(N) Wess-Zumino model in

2þ 1 dimensions, the strong-weak ratio of the total entropy
was found to be 31

35
[7]. The Wess-Zumino model contains

equal amounts of scalar and fermionic d.o.f. The factor of 31
35

comes about through the 4
5
fractionalization of the scalar

d.o.f. [as in the bosonic O(N) model], while the fermions
remain unfractionalized (as in QED3 above). Since fer-
mions in 2þ 1D only contribute 3

4
per d.o.f. to the total

entropy, fractionalization of only the scalars leads to

4
5
þ 3

4

1þ 3
4

¼ 31

35
: ð20Þ

Fractionalization of the d.o.f. in the entropy in these
examples clearly is more subtle than for the photon in
QED3 outlined above, which may explain why it has not
received more attention in the literature.
Taken together, it is hard to ignore the apparent similarity

between the fractionalization of d.o.f. in the entropy in
these strongly coupled relativistic quantum field theories
and the fractional quantum Hall effect [20]. Further work is
needed to illuminate this possible connection, and turn it
into a predictive instrument.

This work was supported in part by the Department of
Energy, DOE Award No. DE-SC0017905. I would like to
thank A. Karch, M. Mezei, R. Nandkishore, R. Pisarski, M.
Säppi, D. Tong, and A. Vuorinen for helpful discussions.

[1] B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse, New
Measurement of the Electron Magnetic Moment Using a

One-Electron Quantum Cyclotron, Phys. Rev. Lett. 97,
030801 (2006).

[2] F. J. Dyson, Divergence of perturbation theory in quantum
electrodynamics, Phys. Rev. 85, 631 (1952).

[3] R. D.Pisarski,Chiral symmetrybreaking in three-dimensional
electrodynamics, Phys. Rev. D 29, 2423 (1984).

[4] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Critical
Behavior in (2þ 1)-Dimensional QED, Phys. Rev. Lett. 60,
2575 (1988).

[5] M. Franz, Z Tesanovic, and O. Vafek, QED(3) theory of
pairing pseudogap in cuprates. 1. From D wave super-
conductor to antiferromagnet via ‘algebraic’ Fermi liquid,
Phys. Rev. B 66, 054535 (2002).

[6] S. Giombi, G. Tarnopolsky, and I. R. Klebanov, On CJ and
CT in conformal QED, J. High Energy Phys. 08 (2016) 156.

[7] O. DeWolfe and P. Romatschke, Strong coupling univer-
sality at large N for pure CFT thermodynamics in 2þ 1
dimensions, J. High Energy Phys. 1910 (2019) 272.

[8] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); The large N limit of superconformal field theories
and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998).

[9] M. Laine and A. Vuorinen, Basics of thermal field theory,
Lect. Notes Phys. 925, 1 (2016).

[10] E. Braaten and R. D. Pisarski, Deducing hard thermal loops
from ward identities, Nucl. Phys. B339, 310 (1990).

[11] G. D. Moore, Pressure of hot QCD at large N(f), J. High
Energy Phys. 10 (2002) 055.

[12] A. Ipp, G. D. Moore, and A. Rebhan, Comment on and
erratum to Pressure of hot QCD at large N(f), J. High Energy
Phys. 01 (2003) 037.

[13] D. T. Son, Is the Composite Fermion a Dirac Particle?, Phys.
Rev. X 5, 031027 (2015).

[14] A. Karch and D. Tong, Particle-Vortex Duality from 3d
Bosonization, Phys. Rev. X 6, 031043 (2016).

[15] A. Karch, B. Robinson, and D. Tong, More Abelian dual-
ities in 2þ 1 dimensions, J. High Energy Phys. 01 (2017)
017.

[16] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, Coupling
constant dependence in the thermodynamics of N ¼ 4
supersymmetric Yang-Mills theory, Nucl. Phys. B534,
202 (1998).

[17] S. Sachdev, Polylogarithm identities in a conformal field
theory in three-dimensions, Phys. Lett. B 309, 285 (1993).

[18] I. T. Drummond, R. R. Horgan, P. V. Landshoff, and A.
Rebhan, Foam diagram summation at finite temperature,
Nucl. Phys. B524, 579 (1998).

[19] P. Romatschke, Finite-Temperature Conformal Field
Theory Results for All Couplings: O(N) Model in 2þ 1
Dimensions, Phys. Rev. Lett. 122, 231603 (2019).

[20] T. H. Hansson, M. Hermanns, S. H. Simon, and S. F.
Viefers, Quantum Hall physics: Hierarchies and conformal
field theory techniques, Rev. Mod. Phys. 89, 025005 (2017).

PHYSICAL REVIEW LETTERS 123, 241602 (2019)

241602-4

https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRev.85.631
https://doi.org/10.1103/PhysRevD.29.2423
https://doi.org/10.1103/PhysRevLett.60.2575
https://doi.org/10.1103/PhysRevLett.60.2575
https://doi.org/10.1103/PhysRevB.66.054535
https://doi.org/10.1007/JHEP08(2016)156
https://doi.org/10.1007/JHEP10(2019)272
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1007/978-3-319-31933-9
https://doi.org/10.1016/0550-3213(90)90351-D
https://doi.org/10.1088/1126-6708/2002/10/055
https://doi.org/10.1088/1126-6708/2002/10/055
https://doi.org/10.1088/1126-6708/2003/01/037
https://doi.org/10.1088/1126-6708/2003/01/037
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1016/S0550-3213(98)00514-8
https://doi.org/10.1016/S0550-3213(98)00514-8
https://doi.org/10.1016/0370-2693(93)90935-B
https://doi.org/10.1016/S0550-3213(98)00210-7
https://doi.org/10.1103/PhysRevLett.122.231603
https://doi.org/10.1103/RevModPhys.89.025005

