
 

Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently
Simulate Non-Markovian Path Integrals

Mathias R. Jørgensen1,* and Felix A. Pollock 2,†
1Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
2School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia

(Received 24 April 2019; revised manuscript received 21 September 2019; published 9 December 2019)

In the path integral formulation of the evolution of an open quantum system coupled to a Gaussian,
noninteracting environment, the dynamical contribution of the latter is encoded in an object called the
influence functional. Here, we relate the influence functional to the process tensor—a more general
representation of a quantum stochastic process—describing the evolution. Then, we use this connection to
motivate a tensor network algorithm for the simulation of multitime correlations in open systems, building
on recent work where the influence functional is represented in terms of time evolving matrix product
operators. By exploiting the symmetries of the influence functional, we are able to use our algorithm to
achieve orders-of-magnitude improvement in the efficiency of the resulting numerical simulation. Our
improved algorithm is then applied to compute exact phonon emission spectra for the spin-boson model
with strong coupling, demonstrating a significant divergence from spectra derived under commonly used
assumptions of memorylessness.
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Introduction.—All nanoscale quantum systems are open,
meaning they inevitably interact with their environments,
exchanging energy and generating correlations. If the
system and its environment remain approximately uncorre-
lated, then the reduced system dynamics is well described
by a Markovian model [1–3]. However, in physical systems
such as photosynthetic complexes, nanoscale lasers, and
quantum thermal machines [4–6], the need to go beyond a
Markovian description has long been recognized, and
techniques accounting for non-Markovian physics have
been developed, with a varying breadth of applicability.
Analytical methods involving time-local equations of
motion exist but tend to be highly restricted to specific
parameter regimes [7–9]. Exact simulation often requires
numerical methods, e.g., discrete path integrals [10–14],
memory kernels [15–21], hierarchical equations of motion
[22,23], and others [24–26]. Overall, these tend to scale
poorly with both simulation time and system size [27],
making them inapplicable to processes involving large
complexes or when long time dynamics is important.
Recently, tensor network methods have been applied to

the simulation [28–31] and characterization [32,33] of open
quantum dynamics. Physically, these methods incorporate
the fact that typical open quantum systems are only finitely
correlated with their environments, massively reducing
their description [34]. In particular, Strathearn et al. [35]
reformulated the discrete path integral for open systems
with Gaussian environments in terms of matrix product
operators; the resulting time-evolving matrix product oper-
ator (TEMPO) algorithm is numerically exact and has an
efficiency comparable to other state of the art methods. By

only considering the most important non-Markovian con-
tributions to the dynamics, the algorithm circumvents the
exponential memory scaling of the bare path integral, in a
similar spirit to earlier path-filtering techniques [36–38].
Motivated by this success, it is natural to ask if tensor
network methods can be efficiently generalized from the
simulation of reduced system density operators, to the
simulation of general non-Markovian processes and multi-
time correlations, which typically require many realizations
of the dynamics to characterize.
In this Letter, we propose such a generalization, by

making a formal connection between the path integral
structure and the recently developed process tensor frame-
work for characterizing general non-Markovian quantum
processes [32]. Then, we use this to argue for an alternative
TEMPO algorithm, where we exploit symmetry in the
underlying tensor network to better account for the causal
structure inherent in the dynamics. This not only allows
efficient computation of multitime correlation functions—
the simulation need only run once to extract all multitime
observable properties—but also opens the door to simulat-
ing more general models. Our alternative formulation is
demonstrated to significantly improve the efficiency of the
method, which we use to straightforwardly compute non-
Markovian emission spectra for the spin-boson model,
beyond the point where the commonly used quantum
regression theorem breaks down [39].
Process tensor framework.—We consider stationary

unitary dynamics of system S along with its environment
E and suppose S is transformed by superoperators Aj

at discrete, evenly spaced times ftk−1;…; t0g, with
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δt ¼ tj − tj−1. In an experiment, these superoperators could
correspond to interventions on the system as it evolves, i.e.,
unitary rotations, measurements, etc., in which case they
are completely positive and, if the interventions are not
conditional on a particular measurement outcome,
trace preserving. Otherwise, they could represent more
abstract transformations useful in the computation of
quantities such as emission spectra. The reduced, and
potentially subnormalized, state of the system at time tk
is given by

ρkðfAjgÞ ¼ trEfUδtAk−1…UδtA0½χ0�g; ð1Þ

where Uδt is a superoperator representation of the unitary
evolution of duration δt, i.e., Uδt½ρ� ¼ UδtρU

†
δt, with Uδt a

unitary matrix, and χ0 is the initial system-environment
state. The inclusion of intermediate transformations makes
it possible to consider a much broader class of physical
properties than free evolution of the density operator
would allow.
Since the state at time tk in Eq. (1) is linearly rela-

ted to each of the superoperators Aj, it can be written
as a linear function of the tensor product of their Choi
representations Ak−1∶0 ¼ Ak−1 ⊗ … ⊗ A1 ⊗ A0, with
Aj ≔

P
sr Aj½jsihrj� ⊗ jsihrj obtained via the Choi-

Jamiołkowski isomorphism [40–42]; here, fjsig forms
an orthonormal basis for S. Specifically, ρkðfAjgÞ ¼
trk−1∶0fϒk∶0ð1k ⊗ AT

k−1∶0Þg, with the trace over all sub-
systems on which Ak−1∶0 acts. As we detail in the
Supplemental Material [43],

ϒk∶0 ¼
X

s⃗0;r⃗0;s⃗;r⃗

trfUðs0k;r0k;sk−1;rk−1Þ
δt …U

ðs0
1
;r0
1
;s0;r0Þ

δt ½χðr00;s00Þ0 �g

× js0ksk−1…s01s0s
0
0ihr0krk−1…r01r0r

0
0j; ð2Þ

with environment superoperators Uðs0;r0;s;rÞ
δt ½ ρE� ¼

hs0jUδtðjsihrj⊗ρEÞU†
δtjr0i and operators χðr

0;s0Þ
0 ¼hr0jχ0js0i,

is the Choi representation of the process tensor [32], a many-
body operator (on 2kþ 1 copies of S) containing all
information about the system’s evolution that is independent
of the superoperators fAjg. Correlations between subsys-
tems of Υk∶0 correspond to temporal correlations between
observables, and a representation in terms of process tensors
has been shown to consistently generalize stochastic proc-
esses, and related notions such as Markov order, to the
quantum case [44–47]. The process tensor is illustrated
graphically in Fig. 1 and can be thought of as a sequence
of correlated maps on the system [48].
Gaussian influence functional.—Here, we consider the

specific structure of the process tensor for systems inter-
acting with Gaussian environments, where the system-
environment Hamiltonian and initial state depend, at most,
quadratically on environment creation and annihilation

operators. For concreteness, we focus on spin-boson type
models, but our results would extend to fermionic envi-
ronments [49] (as well as those with additional commuting
linear interaction terms). Working in natural units
(ℏ ¼ kB ¼ 1), we consider a spin system, with Hilbert
space dimension d, interacting linearly with a bosonic bath
described by the Hamiltonian H ¼ H0 þHB. Here, H0

describes the free spin system, and the full bath influence is
collected in HB ¼ ŝ

P
n ðgnân þ g�nâ

†
nÞ þ

P
n ωnâ

†
nân. A

bath mode n has energy ωn, is created (annihilated) by the
bosonic operator â†n (ân), and interacts with S through the
operator ŝ with coupling strength gn. For simplicity, we
take the initial state to be product, such that χ0 ¼ ρ0 ⊗ τβ,
with the environment initially described by a thermal state
τβ ¼ exp ½−βPωna

†
nan�=Z at inverse temperature β,

where Z ¼ trfexp ½−βPωna
†
nan�g.

In the limit that the time difference δt is small, the
generated unitary dynamics can be approximately sepa-
rated into contributions arising from H0 and HB as
Uδt ≃ V1=2

δt WδtV
1=2
δt , where Vδt describes the free dynamics

of S and Wδt describes the environment influence. The
discrepancy between the approximate unitary maps and the
actual ones vanishes as Oðδt3Þ for this symmetric decom-
position [50]. Since the Hamiltonian only contains a
single interaction term, Wδt preserves the eigenbasis
of the corresponding system operator ŝ ¼ P

s λsjsihsj:
hs0jWδt½jsihrj�jr0i ¼ δss0δrr0W

ðs;rÞ
δt . Together with the deco-

mposition of unitary maps, this allows us to approximate
the process tensor as ϒk∶0≃ðV1=2

δt ⊗V�
δt
1=2Þ⊗k½F k∶0�⊗ρ0,

where

FIG. 1. (a) An arbitrary process with interventions can be
represented as a matrix product form tensor network, the process
tensor (upper row) that contracts with a filter function consisting
of a sequence of superoperators (lower row). This makes it
possible to separate implemented control operations from the
underlying uncontrolled process. (b) In the infinitesimal time step
limit, the uncontrolled process can be further decomposed into
free evolution of the system (middle row) and a generalized
influence functional capturing the influence of the environment.
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F k∶0 ¼
X

s⃗;r⃗

trEfWðsk;rkÞ
δt …Wðs1;r1Þ

δt ½τβ�g

× jsksk…s1s1ihrkrk…r1r1j; ð3Þ
is an operator representation of the discretized Feynman-
Vernon influence functional [51] encoding environment
induced correlations.
For Gaussian environments, the bath degrees of freedom

can be traced over analytically using standard path integral
techniques [10,11,14,52]. In this case, introducing the d2

compound indices α ¼ ðs; rÞ, an element of the influence
functional F αk;…;α1

k∶0 ≔ hsksk…s1s1jF k∶0jrkrk…r1r1i can
be decomposed as

F αk;…;α1
k∶0 ¼

Yk

i¼1

Yi

j¼1

½bði−jÞ�αi;αj ; ð4Þ

where bði−jÞ is called an influence tensor; the exact form,
which can often be approximated by an analytic function
[53,54], is given in the Supplemental Material [43] along
with a full derivation of Eqs. (3) and (4). The influence
tensors connect the dynamics around time step i with that
around step j, quantifying temporal correlations mediated
by the environment between those two points; that is, they
describe memory effects. Since the Hamiltonian is time-
independent, the individual tensors ½bl� depend only on the
temporal separation lδt, simplifying the complexity con-
siderably. However, since the influence functional is a k
index tensor, it is still potentially exponentially complex;
we now show how viewing Eq. (4) as a tensor network can
make its calculation more tractable.
Tensor network simulation.—In many cases, the envi-

ronment interaction produces only finite length correlations
in F k∶0, a fact used by the authors of Ref. [35] to
circumvent the exponential complexity growth by repre-
senting it in terms of matrix product operators (MPOs) [55].
To introduce this representation, we extend our two-index
influence tensors to three-index tensors as ½bði−jÞ�γ;αiαj ≔
δγαj ½bði−jÞ�αiαj , where, by convention, upper and lower

repeated indices are summed over (otherwise, tensor
elements differing only through raising or lowering are
equal). In terms of these, we define the nonlocal time-
evolving MPOs

ð5Þ

where the outgoing (ingoing) arrows in the graphical
representation indicate upper (lower) indices, and lines
running through the row and column of a given “0" tensor
are fixed to have the same index through Kronecker deltas;
superfluous indices are traced over at the boundaries. Then,

the full influence functional can be constructed by iteratively
multiplying such MPOs. If we label individual MPOs in the
product by Gαi;…;α1, then we can express the iterative
multiplication as F αk;…;α1

k∶0 ¼ Gαk;αk−1;…;α1
βk−1;…;β1

F βk−1;…;β1
k−1∶0 , with

Gαk;αk−1;…;α1
βk−1;…;β1

≔ Gαk;…;α1δαk−1βk−1
…δα1β1 ; this is represented

graphically by the two-dimensional tensor network shown
in Fig. 2(a). Conceptually, the use of time-evolving
MPOs, allows the state of the system to be propagated by
updating indices to encode memory effects from
the past process. This type of propagation is analogous to
a description in terms of a time nonlocal memory
kernel, since open legs are connected to tensors descri-
bing the influence of the state at various points in its
history [56].
A key insight of this Letter is that the decomposition of

the influence functional into MPOs is not unique.
Kronecker deltas implicit in Eq. (5) mean that each open
leg in Fig. 2 could be shifted to any tensor in the same row
or column. In particular, the causal structure of the process
tensor motivates an alternative definition in terms of local
time-evolving MPOs

FIG. 2. Tensor network representation of the influence func-
tional on five time steps, with nodes representing influence
tensors and labeled by time step separation. Before contraction,
indices are constrained to be equal along rows and columns in the
network; therefore, the open boundary can be shifted to any
tensor in the same column [panels (a) and (b)] or row [panels (c)
and (d)]. (a) With the nonlocal boundary choice of Ref. [35], free
indices are attached to influence tensors encoding memory effects
over all different timescales. (b) The network is contracted
iteratively from below, row by row, down to a boundary
MPO. (c) With the local boundary choice, the free indices are
always attached to time-local influence tensors. (d) Contraction
proceeds as indicated, with the causal influence of each open leg
sequentially incorporated into the wider network. The influence
functional on an open leg is fixed once the corresponding layer
has been contracted over.
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ð6Þ

where, now, we end up with a redundant index at the left
boundary, which we trace over, and at the right boundary
we impose the condition that the lower index must equal αi.
Labeling the individual MPOs in the product by Cαk;…;αi,
the iterative multiplication can be expressed as
F̃ αk;…;α1

ðk∶iþ1Þ ≔ Cαk;…;αiþ1

βk;…;βiþ1
F̃ βk;…;βiþ1αi;…;α1

ðk∶iÞ , with Cαk;…;αi
γk;…;γi ≔

Cαk;…;αiδαkγk…δαiγi (for i ≥ 1) and F̃ αk;…;α1
ðk∶1Þ ≔ Cαk;…;α1 . The

resulting network representation for the influence func-
tional F k∶0 ¼ F̃ ðk∶kÞ is shown in Fig. 2(c). Conceptually,
the local time-evolving MPOs propagate the state by
updating a set of effective memory space indices that
describe how E is conditioned by S. Since the process
tensor, and hence, the influence functional, has a well-
defined causal structure, this conditioning only occurs from
the past to the future. This means that, for a fixed evolution
time, the size of the tensor to be updated decreases with
each iteration.
In contracting the network, efficiency is achieved by

incorporating a tensor compression procedure of the
obtained boundary in each iteration. In this Letter, we
make use of the singular value compression procedure (see
Supplemental Material [43]) [35,55]. The local tensors at
the boundary are subjected to a singular value decom-
position, and singular values below a specified cutoff λc are
discarded. For the nonlocal algorithm [Figs. 2(a) and 2(b)],
the tensors contracted in each iteration encode information
about the influence of multiple time steps on each other.
When correlations become smaller at longer time scales, as
is typical, not all this information is dynamically relevant.
The local algorithm [Figs. 2(c) and 2(d)] incorporates this
insight and separates out the most important contribution
by including only the future influence of the environment at
each time step. Generally, the most local contributions have
the largest singular values, and therefore, the separation
means that the part of the boundary being propagated in the
local case is less correlated, translating into a more efficient
algorithm.
Network complexity for a two level system.—Now, we

turn to the specific simulation of the dynamics of a two-
level system and compare the performance of the nonlocal
and local algorithms. Consider the free Hamiltonian H0 ¼
Ωσx=2 and ŝ ¼ σz=2, where σx and σz are the usual Pauli
operators. The environment is fully characterized by its
spectral density defined as JðωÞ ¼ P

n jgnj2δðω − ωnÞ [1].
Here, we consider a continuum bath model with
spectral density JðωÞ¼ðαωc=2Þðω=ωcÞνexpð−ω=ωcÞ with

coupling strength α, cutoff frequency ωc and Ohmicity ν,
where, for an Ohmic spectral density, ν ¼ 1.
The computational complexity is quantified by the

computation time required to contract the network with
a fixed singular value cutoff (see Supplemental Material
[43] for details). In general, this will depend on the overall
magnitude of the influence functional as well as the
characteristic memory time quantifying how elements of
the influence tensors bði−jÞ decrease in magnitude at large
ji − jj. In the Supplemental Material [43], we show that, for
fixed evolution time, the memory time goes as α=ðβωcÞ
when ωc is large, and that the total hardness goes as
αωct2max=β when ωc is small. In Fig. 3, we plot the
computation time for the local and nonlocal algorithms
as a function of coupling strength and bath timescale. We
find that the local representation outperforms the nonlocal
one by 1 to 2 orders of magnitude, and that the improve-
ment increases at larger coupling strengths (In the
Supplemental Material [43], we show that the advantage

FIG. 3. (a) Variation of computation time with the inverse of the
cutoff frequency for the local algorithm at a coupling strength of
α ¼ 0.7, for an Ohmic spectral density with T ¼ 0.01Ω and
λc ¼ 10−6, the vertical line shows the (fixed) time step size used
for the Trotter-Suzuki decomposition. (b) Comparison between
the computation time of the nonlocal [Eq. (5)] and local [Eq. (6)]
time-evolving MPO algorithms as a function of coupling strength
with ωc ¼ 10Ω (the remaining parameters are unchanged).
(c) Steady state phonon emission spectrum at α ¼ 0.5, the
(numerically converged) non-Markovian spectrum is simulated
using the local algorithm and is compared with the spectrum
obtained using the regression theorem.
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persists into the easier weak coupling regime and for
varying ωc.).
It should be kept in mind that, unlike in most simulation

methods, including the original TEMPO algorithm, the
object we are computing is the full process tensor, which
efficiently encodes all multitime properties of the system.
In particular, we can compute the steady state emission
spectrum SðωÞ ¼ RefR∞

0 dτ½gð1ÞðτÞ − gð1Þð∞Þ�e−iωτg,
defined in terms of the two-point correlation function
gð1ÞðτÞ ¼ limt→∞hσ†ðtþ τÞσðtÞi, with σ† and σ the raising
and lowering operators on the spin system. To compute it,
we take all superoperators which the process tensor acts on
to be the identity I (with action I ½ρ� ¼ ρ) except for two,
which append a raising or lowering operator, respectively.
In Fig. 3(c), we study the physical effects of system-
environment correlations by looking at the phonon emis-
sion spectrum. We compare this with the spectrum com-
puted using the quantum regression theorem, which
approximates intermediate dynamics with that from an
initial product state and is valid in the weak-coupling limit
[5]. The regression theorem correlations are obtained by
breaking all correlations in the process tensor across time
steps at which the raising and lowering operators are
evaluated. Figure 3(c) shows that non-Markovian effects
produce a phonon sideband in the spectrum only at positive
frequencies, this is contrasted with the regression theorem
result which also gives emission at negative frequencies.
These significant differences illustrate the importance of
accounting for non-Markovian physics.
Conclusion.—In this Letter, we have established a direct

connection between the process tensor framework for
characterizing non-Markovian quantum processes and
the path integral formulation of open quantum dynamics.
By relating the influence functional to a process tensor on
an infinitesimal time grid, which has an explicit causal
structure, we were able to build on recent progress in the
simulation of open quantum systems in terms of tensor
networks. Specifically, we showed that the speed of the
TEMPO algorithm, when computing the multitime proper-
ties encapsulated in the process tensor, can be improved by
orders of magnitude by shifting the corresponding tensor
network boundary from a temporally nonlocal to a local
one. Our contribution is immediately applicable to the
efficient simulation of nontrivial spectral phenomena in
realistic complex open systems.
The utility of the nonlocal TEMPO algorithm has been

illustrated by computing the Ohmic localization transition,
and the dynamics of complex problems with multiple
separated timescales [35]. The improved algorithm pre-
sented here is capable of exploring the same physics
more efficiently and easily extends to the computation of
multitime observables, of the sort crucial to describing,
for example, ultrafast spectroscopy experiments [57].
Moreover, relating open systems techniques, such as the
path integral, to the more general process tensor formalism

indicates how they might be adapted to more complex
system-environment interactions, or even beyond the
Gaussian regime. Even within the spin-boson model, the
freedom of boundary choice we have identified could be
further exploited in other contexts. While the local choice
appears optimal here, it may be that, for other, structured
spectral densities, different boundary choices are
more efficient, a point whose exploration we leave for
future work.
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