
 

Goychuk Replies: The author of the preceding Comment
[1] attempts to prove that the non-Markovian Fokker-
Planck equation or NMFPE [Eqs. (3), (4)] in our Letter
[2] does not correspond to the generalized Langevin
equation or GLE therein with m ¼ 0. With this goal in
mind, he points out that the same master equation also
corresponds to a Markovian process upon a transformation
of the time variable. This observation is, however, not
correct because such a master equation as NMFPE does not
define uniquely the stochastic process [3], apart from its
single-time probability density Pðx; tÞ. Moreover, this
NMFPE is exact [3–5] for the inertialess GLE dynamics
in a parabolic well. Indeed, in this case, xðtÞ is a non-
Markovian Gaussian process, which is fully characterized
by its first two moments—what allows finding the exact
NMFPE [2–6]. Moreover, Gaussian approximation for the
escape problem is well justified for L ≫ lT in Ref. [2], and
the analytical solution of the NMFPE yields escape kinetics
much slower than the relaxation process, which is con-
sistent with the main assumptions of the rate theory [7].
Next, the author of Ref. [1] numerically confirms in Fig. 1

an important analytical result on the fractional Fokker-
Planck equation (FFPE) escape also obtained in Ref. [2].
Furthermore, he uses our approach [5,8] to numerically
integrate the GLE and presents a result which disagrees with
theNMFPE result inRef. [2]. His result is, however, not new.
A methodological issue with using the NMFPE approach to
describe escape kinetics was clarified at length in our
subsequent work [5,8,9]; see, e.g., in review Ref. [5] on
pp. 221–229 and Ref. [8], pp. 7 and 8. Indeed, the
application of the NMFPE to the escape problem is based
on the assumption that all the relaxation modes of the
environment, which lead to the memory friction in the GLE,
are fast on the time scale of escape (or barrier passage). The
Markovian embedding approach to GLE dynamics of
Refs. [5,8], which superseded some of the results in
Ref. [2], makes this exceptionally clear. The corresponding
numerics revealed many fast escape events occurring on the
background of slow, quasifrozen relaxationmodes. This fact
is the reason why the NMFPE approach fails in such a
situation [5,7–9]. Indeed, the GLE escape kinetics is often
better described by a stretched exponential dependence
[5,8,9], rather than a power law. Hence, the fact that GLE
escape can occurmuch faster than the NMFPE-based theory
[2] predicts is firmly established in the prior literature.
Nevertheless, the NMFPE can concurrently describe relax-
ation kinetics in a bistable potential remarkably well [9].
Indeed, electron transfer in the adiabatic limit of a non-
Markovian generalization of Zusman theory in Ref. [9]
corresponds to fractional kinetics in a double parabolic well
potential with a cusp. The analytical results stemming froma
NMFPE-based approach agree well with the GLE based
numerics for the relaxation kinetics in Fig. 1 therein.

However, the escape kinetics in Figs. 2(f) and 2(e) of
Ref. [9] reveals a failure of the NMFPE approach. This
disagreement of the ensemble-basedNMFPE approachwith
the trajectory-based GLE results provides also a manifes-
tation of nonergodic features [9].
Moreover, this very subtle issue with use of the NMFPE

was not originated in Ref. [2]. The akin idea to apply an
exact NMFPE to a passage through a parabolic barrier can
be traced back to Ref. [10] and was used in a number of
subsequent papers. Its success was demonstrated, e.g., by
reproducing the non-Markovian rate also obtained by other
methods in the limit of high potential barriers [7].
To conclude, for Pðx; tÞ, the NMFPE in Ref. [2] exactly

corresponds to non-Markovian GLE dynamics in a para-
bolic potential well. Its application to the escape problem is,
however, subjected to certain failures, indicated above and
clarified in Refs. [5,7–9]. Nevertheless, it nicely describes,
e.g., a bistable relaxation dynamics [9]. Hence, the NMFPE
of Refs. [3,4,6] used in Ref. [2] was and remains one of the
gems of the theory of non-Markovian stochastic processes
and its applications. However, it must be used with care.
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