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2Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

3Physical microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015, Paris, France

(Received 1 August 2019; published 5 December 2019)

We quantify the spatiotemporal transformation of a monodisperse and well-ordered monolayer of
bubbles, as they undergo Ostwald ripening, by tracking the size polydispersity of the bubbles and local
ordering of the foam. After nuclei of disorder appear at random locations, the transition takes place through
two successive phases: first, the disordered regions grow while the value of polydispersity increases slowly,
then the polydispersity grows rapidly once the disordered zones begin to merge together. The transition is
captured by a modified logistic model.
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Foams are self-organized assemblies of bubbles packed
together in a continuous liquid phase. They present unusual
mechanical [1–3], acoustical [4], and heat transfer proper-
ties [5]; in particular, they are excellent thermal insulators
but dissipate mechanical energy very efficiently. The
peculiar foam properties originate from their structure at
the bubble scale. However, controlling this structure is
challenging because it constantly evolves, owing to various
dynamical processes. These processes can be (i) local, at
the scale of individual bubbles, like gas transfer between
neighboring bubbles, (ii) mesoscopic, like plastic rear-
rangements of bubbles that induce elastic stress redistrib-
ution in the foam nearby [6–8], and (iii) macroscopic at the
scale of the complete foam, like gravitational drainage.
Understanding the aging of foams or emulsions is

therefore of great relevance in many applications. This is
particularly true for wet foams, in which the liquid fraction
exceeds about 10%, which are widespread in food prod-
ucts, cosmetics, construction materials, fire fighting, or
high performance materials [9]. This context has motivated
much work on the time evolution of the bubble distribution
in a foam. Particular attention has been paid to the transfer
of gas between bubbles of different sizes, a mechanism
known as Ostwald ripening [10–13]. This process leads
small bubbles to dissolve into large ones and culminates
with the disappearance of small bubbles while the average
radius of the remaining bubbles increases. Statistical
models for the late-time dynamics show that aging by
Ostwald ripening is governed by self-similar dynamics, in
which the bubble sizes converge to a stationary distribution,
once rescaled by the average volume, which itself increases
as a power law of time [14].
While monodisperse bubbles self-organize into a crystal

structure that leads to specific physical and mechanical
characteristics, this structure is lost when the bubbles
become polydisperse. Although this transition corresponds

to a major change in the bubble structure and properties,
the early-time aging of a monodisperse wet foam is not well
understood. Indeed, most early-time studies have focused
on dry foams, for which the evolution is dictated by
pairwise gas transfer through thin films between neighbor-
ing bubbles. In contrast, gas transfer in wet foams takes
place at several scales, owing to the large interstices of
liquid between bubbles. Moreover, most of these existing
studies have focused on testing [15] and extending [16]
long predicted local features of the evolution, such as the
so-called von Neumann, Lewis, or Aboav-Weaire laws (see
Ref. [10] for a review).
Here we use microfluidics to generate a monolayer of

monodisperse bubbles, using the confinement gradients
approach [17] [see Fig. 1(a)]. In the device, 3.3 × 104

bubbles of initial radius R0 ¼ 118 μm are produced in
about 10 min and arrange into a monolayer on top of the
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FIG. 1. (a) Sketch of the microfluidic device. A hexagonal
chamber is connected to four air injectors. Height of red region
increases from 30 μm at the inlet to 800 μm in the chamber.
(b) Cross section of the chamber. The air injected through the slope
breaks into monodisperse bubbles that pack atop the observation
chamber. (c) Image of the device at the start of the experiment. The
square indicates the area shown in the Figs. 2(a).
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liquid layer [Figs. 1(b) and 1(c)]. The size and position of
each bubble is then individually tracked for 20 h, which
allows us to determine the time evolution of the complete
monolayer; see materials and methods in Supplemental
Material [18] for a detailed description of the experiment
and protocol.
The foam initially exhibits a high crystalline order, the

bubbles being hexagonally packed [Figs. 1(c), 2(a)(i)–
2(a)(iv)]. Grain boundaries are present between regions
of different crystal orientations and some vacancy defects
are present. As time advances, some bubbles spontaneously
begin to grow at the expense of their six immediate
neighbors [Fig. 2(a)]. These disorder nuclei then begin
to affect the following layer of neighbors [top two
“rosettes” in Fig. 2(a)(ii)] and so on until the whole foam
begins to look disordered and polydisperse. This process is
summarized in Fig. 2(a) and in Movies M1 and M2 in
Supplemental Material [18]. The ripening nuclei seem to
appear randomly at different locations, independently of
the position of the grain boundaries or of the vacancy
defects.
This nucleation behavior is in marked contrast with dry

2D foams, where the number of neighbors determines the
evolution of each bubble [23–26]. In the dry case, the
number of neighbors constrains the curvature of the liquid
films, which in turn dictates the pressures and thus the gas
transfers between bubbles. This constraint is nonexistent in
our case, since all the bubbles are spherical.
In parallel with the disordering of the monolayer, the

distribution of bubble radii displays a continuous transition
from a very peaked value at initial times to a broad
distribution, a few hundred minutes later [Fig. 2(b)]. At
late times, the normalized distribution reaches a stationary
shape, which is the hallmark of the asymptotic self-similar

dynamics, as predicted by the different models of Ostwald
ripening [14]. Indeed, the exponents of the mean bubble
radius hRi and number of bubbles N are consistent with
Lifshitz-Slyozov-Wagner theory [27,28], which predicts
hRi ∼ t1=3 and N ∼ t−1 (see Fig. S1 in Supplemental
Material [18]) for a 3D dispersion of bubbles. This agree-
ment on the long-term regime suggests that our monolayer
system of spherical bubbles is a representative model
system for a general 3D foam of nearly spherical bubbles.
The evolution of the size distribution can be quantified

by tracking the polydispersity of the foam, defined as the
ratio of the standard deviation to the mean of the bubble
radii: P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðR − hRiÞ2i

p
=hRi. The evolution of P is

represented in Fig. 2(c). It shows a transition from an
initial monodisperse state (P ¼ 3%) to a state of steady
polydispersity of around 30% at late times. The transition
between the two states occurs through a sharp increase of P
between 100 and 400 min.
A breakdown of the crystalline arrangement accompa-

nies the increase in polydispersity. This increase of spatial
disorder can be quantified using a local order parameter,
obtained by performing a Delaunay triangulation of the
bubble positions, and distinguishing between regular, i.e.,
nearly equilateral, and irregular triangles (see Ref. [18] for
details). By defining a threshold value for the order
parameter, each bubble can be ascribed to the “ordered”
versus “disordered” regions [Fig. 3(a)].
As described earlier [Fig. 2(a)], disordered regions

nucleate as “rosettes,” then expand and merge together
when their edges meet, as the disorder invades the foam.
This leads to a final state in which the vast majority of the
bubbles is classified as disordered. The ability of this
classification to capture the dynamics of disorder growth is
shown in Movie M3 in Supplemental Material [18], where
the positions of the red dots (disorder) reproduce the
locations of the most disordered zones, while the blue
dots (ordered) correspond well to the hexagonal zones of
the foam.
Based on this classification, it is possible to count the

number of bubbles No in the ordered region and Nd in the
disordered region, see Fig. 3(b) (subscripts o and d
designing henceforth, respectively, ordered and disordered
populations). Since N ¼ No þ Nd decreases, as tiny bub-
bles shrink and disappear, it is more representative to plot
the number fraction of each class, defined as x≡ xd ¼
Nd=N and xo ¼ No=N. The fraction of disordered bubbles
is initially low and progressively increases [Fig. 3(b)]. At a
crossover time of 246 min, x exceeds 50%, and quickly
reaches nearly 100% of the population.
The division of the foam into ordered and disordered

subpopulations allows us to calculate the two correspond-
ing polydispersity coefficients Pd and Po. Figure 3(c)
shows that Pd starts to grow earlier, and is always larger
than Po. This intuitive result provides a quantitative link
between the local changes in bubble size and the local
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FIG. 2. (a) Close-up of the foam for t ¼ 6, 126, 216, and
291 min. Note that the disorder does not nucleate near the
vacancy defect. (b) Probability distributions of the bubble radii
normalized by their mean value, for different times. Late-time
size distributions collapse on a master curve. (c) Evolution of the
total polydispersity P of the foam. The vertical dashed line marks
the position of the inflection point, at t ¼ 246 min.
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disorder. The global evolution can then be obtained from a
combination of the evolutions of the two subpopulations. If
we assume that hRio ¼ hRid, which is true at early times
and remains approximately true afterwards (Fig. S2 [18]),
we can compute P:

P2 ¼ xPd
2 þ ð1 − xÞPo

2: ð1Þ

The curve for P shown in Fig. 3(c) indeed reproduces
precisely the curve in Fig. 2 for the whole foam.
Equation (1) shows that an increase in the global poly-

dispersity can be due either to an increase of the poly-
dispersity within the disordered zone, for a fixed number
fraction x, or to an increased size of the disordered zone at
constant polydispersity. However, these two scenarios
would have very different effects on the structure of the
foam. To understand which effect dominates at any
moment, we calculate the time derivative of Eq. (1):

∂tðP2Þ ¼ _xðP2
d − P2

oÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A

þ x∂tðP2
dÞ þ ð1 − xÞ∂tðP2

oÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

: ð2Þ

In this way we can distinguish the two aforementioned
contributions: the first term (A) that describes the variation

of P2, due to the variation of the number of disordered
bubbles _x at constant Pd and Po, while the second term (B)
characterizes the variations of the polydispersities of the
two populations, for a given disorder fraction x.
As expected from the observed evolution of P, ∂tðP2Þ

displays a single peak [Fig. 3(d)]. However, it results from
two different dynamical processes that occur successively.
The first phase of growth is dominated by the A term of
Eq. (2). It corresponds to the nucleation and growth of
disorder, while the polydispersity in each of the zones
increases slowly. This nucleation-growth phase takes place
over a short and well-defined period. The second phase that
follows is dominated by the B term; it lasts longer and
displays a maximum that occurs after the expansion of the
disordered regions has mostly decayed. This phase corre-
sponds to the aging of the now globally disordered foam
until the self-similar regime is reached.
Since the foam properties are intimately related to the

spatial organization of the bubbles, the first stage pro-
foundly alters the physical behavior of the foam. We
therefore seek to understand the mechanisms governing
the growth dynamics of the disordered zones, by modeling
the evolution of x. To do so, we consider the growth of
already formed nuclei of disorder, which invade the ordered
regions at the boundaries between the two zones [Fig. 4(a)].
The rate of evolution of the fraction of disordered zones _x is
expected to be proportional to the total perimeter of
the boundaries between ordered and disordered zones.
This perimeter is proportional to xð1 − xÞ (Fig. S3 [18]),

FIG. 4. Sketch of the model describing disorder invasion.
(a) The ordered region (blue) is perfectly monodisperse, while
the disordered region (red) has a known probability density
function of bubble sizes. (b) Sketch of the dynamics that
describes the increment of the border between the two regions
by one row of bubbles. This is assumed to take place during a
time tJ . (c) Time evolution of the disordered fraction x. The
measured value (solid line) is very well reproduced by Eq. (5)
with τ0 ¼ 1.2 × 102 s as best fitting parameter.
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(a)
(b)

(c) (d)

FIG. 3. (a) Delaunay triangulation of the bubbles of Fig. 2(a)(iii).
Ordered bubbles are represented by blue disks, disordered ones
by red stars. (b) Time evolution of the total number of bubbles
N in the foam (black line), in the ordered population (No,
blue line) and in the disordered population (Nd, red line). The
inset shows the normalized fractions of bubbles in each class.
(c) Evolution of the polydispersity of each population (red,
disordered; blue, ordered; black, total). (d) Rate of change of
P2 (black curve) and its components: Curve A indicates the
change in number of disordered bubbles while curve B indicates
the increase in polydispersity for fixed values of xd and xo [see
Eq. (2)].
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indicating that the disordered regions are indeed randomly
spatially distributed. We therefore expect the disordered
regions to grow as _x ¼ xð1 − xÞ=τ, where τ is a character-
istic invasion time.
The simplest model involves a constant value of τ. This

yields the well-known logistic equation, which has count-
less applications in the dynamics of populations, growth of
tumors, and many other domains [29]. In the context of
foams, a similar approach was used by Glazier et al. [15]
for the coarsening of dry foams, except that these authors
also accounted for the disappearance of small bubbles.
The logistic equation has an analytical solution: x ¼ x0=
½x0 þ ð1 − x0Þe−t=τ�, which can be fitted to our experimen-
tal data with τ as a single fitting parameter. Although this
captures the transition from an ordered to a disordered
foam, it does not accurately capture the sharpness of the
transition (Fig. S4 [18]).
We therefore question the assumption of a constant

invasion time τ, by considering the first row of ordered
bubbles located at the edge of a disordered region. We
assume that the radius of these bubbles begins to deviate
from the initial value R0 as soon as the boundary of the
disordered zone reaches them. They then switch to the
disordered region when their radius changes sufficiently to
locally break the crystalline arrangement. At this instant,
they become disordered and the boundary jumps to the next
row of bubbles, as depicted in Fig. 4. Similarly to the
classical Lindemann criterion for the melting of crystals
[30], we assume that this switch happens when the radius
varies by a factor α. Hence, τ is taken as τ ¼ αR0=hj _R0ji.
The rate of variation of a bubble radius can be predicted

by applying the Lemlich model [31,32] that uses a mean-
field approximation to estimate the evolution of a particular
bubble surrounded by a population of bubbles of random
sizes. In our case, a bubble on the first ordered layer is
exposed to the disordered environment on the other side of
the boundary. According to the Lemlich formula, its rate of
radius variation is

_R0 ¼ κ

�
1

R21
d

−
1

R0

�
; ð3Þ

where κ is a parameter incorporating the physicochemical
properties of the foam (see Ref. [18] for a detailed
discussion). The radius R21

d is the ratio of the second to
the first raw moments of the size distribution of the
disordered bubble population. Since here we consider only
the distribution of disordered bubbles, its expression
becomes

R21
d ¼ hR2id

hRid
¼ hRidð1þ Pd

2Þ; ð4Þ

by using the definition of the polydispersity.
We can now estimate the invasion time τ from Eqs. (3)

and (4). The sign of the radius variation is irrelevant, since

the disorder can arise from either shrinkage or swelling, so
we take the absolute value of _R0: 1=τ ¼ ð1=αÞj _R0=R0j ¼
ðκ=αR0Þj1=½hRidð1 − P2

dÞ� − ð1=R0Þj. Finally, we recall
that R0 ¼ hRio ≃ hRid (Fig. S2 of Ref. [18]), to obtain
1=τ ¼ ðκ=αR0Þ½P2

d=ð1þ P2
dÞ� ≃ P2

d=τ0 (Pd ≪ 1), where
τ0 ¼ αR2

0=κ. This invasion rate can be inserted into the
formula for _x and then integrated to yield:

xðtÞ ¼
�
1 −

�
1 −

1

x0

�
exp

�
−

1

τ0

Z
t

0

Pdðt0Þ2dt0
��

−1
: ð5Þ

The expression of Eq. (5) is fitted to the experimental
measurement of xðtÞ, using the experimental values of
Pd as measured without further processing and taking τ0 as
a unique fitting parameter. As shown in Fig. 4, the agree-
ment with the data is excellent, for a value of τ0;exp ¼
1.2 × 102 s. This agreement confirms that the destabiliza-
tion of the foam is accelerated as the disordered regions
become more polydisperse.
In order to compare the experimentally obtained value of

τ0;exp with the theoretical estimate τ0 ¼ αR2
0=κ, we return to

the classical use of the Lindemann criterion. Indeed, the
relative variation of radius α necessary to induce local loss
of order may be compared to the ratio δ between the
amplitude of thermal vibrations and the interatomic dis-
tance in a solid. This ratio has been measured for metals at
the melting point: δ ¼ 0.07 [33,34]. Therefore, taking
α ¼ 0.07 and using the values of κ in the Supplemental
Material [18] yields τ0 ¼ αR2

0=κ ¼ 2.7 × 102 s. This value
is in good agreement with the experimentally fitted
parameter, even though the comparison between α and δ
is only qualitative and despite the uncertainties on the
values of the physical quantities.
The transition discussed above is both spatially inho-

mogeneous and takes place through two different dy-
namical processes. From a spatial point of view, the
disorganization starts with the nucleation and growth of
disordered regions that coexist with the ordered regions.
The nuclei appear randomly everywhere in the monolayer
and grow by incorporating the neighboring bubbles row by
row. The global growth of the disordered regions follows
an accelerated logistic model, in which the transition
accelerates as the polydispersity increases. This growth
then slows down when the disordered regions merge: this is
evidenced by comparing the slowing-down of term A in
Fig. 3(d) with the reduction in the perimeter of the
disordered zones in Fig. S3 [18].
From a temporal point of view, the two successive

periods correspond to different dynamics of the bubble
monolayer. The first period, which corresponds to the
switch from order to disorder, takes place for nearly
constant number of bubbles and mean radius (Fig. S1
[18]). This contrasts with the second period, whose
evolution is determined by the well-studied Ostwald
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ripening dynamics: a decrease of the number of bubbles, as
small bubbles disappear, and the corresponding increase in
the mean radius of the remaining bubbles. Indeed, our
measurements show very good agreement with the power
laws predicted by the Lifshitz-Slyozov-Wagner theory.
Interestingly, the duration of the first phase is expected
to be independent of the total size of the foam, since it is
given by the time required for the disordered regions to
meet and merge. Since the disordered regions nucleate
randomly and grow based on local equilibria, the total size
of the foam is not expected to matter.
The dynamics discussed above bears a direct relation with

industrial foams and emulsions, for which the scenario of
nucleation and growth of disorder is expected to be pre-
served, the aging mechanisms for emulsions being also
governed by the same physics. This implies that initially
monodisperse systems should undergo periods of coexist-
ence between ordered anddisordereddomains, eachofwhich
having distinct physical properties. The nuclei of disorder
occur in the bulk of the foam, not only at its boundaries, and
invade the whole system over a rather short and well-defined
period. Knowing these mechanisms should have direct
practical impact, for example, in choosing the timescale
for solidifying the liquid phase to produce a solid foam.More
interestingly, the coexistence state can in principle be used to
create complex metafoams or metaemulsions, in which
crystalline domains are randomly interspersed with amor-
phous domains. Controlling the interpenetration of the two
domain types could allow materials with exotic mechanical,
optical, or acoustic properties.
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