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We present a complete analysis of the linearized dynamics of active solids with uniaxial orientational
order, taking into account a hitherto overlooked consequence of rotation invariance. Our predictions
include a purely active response of two-dimensional orientationally ordered solids to shear, the possibility
of stable active solids with quasi-long-range order in two dimensions and long-range order in three
dimensions, generic instability of the solid for one sign of active forcing, and the instability of the
uniaxially ordered phase in momentum-conserved systems for large active forcing irrespective of its sign.
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Active systems [1] are held away from thermal equilib-
rium [2,3] by a direct supply of free energy to individual
constituent units. The isotropic supply of energy can couple
nontrivially with the particle anisotropy leading to macro-
scopic phenomena such as coherent intracellular flows
[4–6] and defect turbulence in motor-microtubule extracts
[7]. Whereas theories of active oriented fluids are well
established and understood [1,8–11], oriented active solids
have received lesser theoretical attention. While multiple
biological systems have been modeled as uniaxial active
elastomers [12–16] and descriptions that couple phase-field
crystals with the Toner-Tu equations for a polar flock have
been constructed [17–20], this has so far been carried
out without a theory of uniaxial active solids. In particular,
all these studies ignore a symmetry-mandated coupling
between orientation and strain, which in passive uniaxial
elastomers would have led to the vanishing of the zero-
frequency shear modulus [21–24] due to rotation invari-
ance. This implies that an equilibrium uniaxial elastomer
cannot exist in two dimensions and can only have
quasi-long-range order (QLRO) in three dimensions. Can
active orientationally ordered elastomers, unlike their
passive counterparts, resist shear at zero frequency and
thus acquire stability in two dimensions? To answer this
question, and more, we present a complete hydrodynamic
theory of an active solid with polar or nematic orientational
order, in contact with a substrate or in a momentum-
conserving permeating fluid medium. The former descrip-
tion has been employed to describe cell monolayers or
tissues in an extracellular matrix [13,14,16] and an iso-
tropic variant of the latter for the response of isotropic
cross-linked active gels [25–28]. We start with a description
in which the polar or apolar order parameter is coupled to
an isotropic solid and, in the ordered phase, eliminate the
nonhydrodynamic director modes to obtain the effective
equations for polar or apolar active gels. Our treatment also
applies to the systems considered in Ref. [29] in the limit of

infinite polymer relaxation time, the hydrodynamic limit of
a Vicsek model with harmonic interparticle interactions
[30], a continuum description of the slow variables of the
motile solid phases in self-propelled Voronoi models [31],
the hydrodynamics of traveling crystals [17–20], contrac-
tile polar filaments on substrates [32], and experiments and
simulations of mixtures of passive beads and driven polar
rods in the high-density limit [33].
Here are our main results. (i) Active polar or apolar

elastomers, when dynamically stable, resist shear forces in
all directions, leading to quasi-long-range and long-range
translational order in two and three dimensions, respec-
tively, in contrast to passive orientationally ordered elas-
tomers which, lacking one shear modulus, can support only
quasi-long-range order in three and short-range order in
two dimensions. (ii) The dynamics of polar motile elas-
tomers, at linear and nonlinear order, is qualitatively
distinct from that of a solid driven in an externally imposed
direction [34] and escapes the latter’s transverse buckling
instability. (iii) An active force proportional to ∝ Q ·∇ ·Q,
where Q is the apolar order parameter, always destabilizes
elastomers on a substrate when its magnitude is larger than
the active force ∝ ∇ ·Q, irrespective of the sign, in contrast
to its stabilizing role in incompressible active fluids on
substrates [35]. (iv) For bulk momentum-conserving
systems, ignoring inertia, extensile (contractile) stresses
destabilize positively (negatively) uniaxial elastomers.
(v) Uniaxial elastomeric gels are generically destabilized
at high activities when a forcing rate given by the ratio of
the coefficient of the active stress to the viscosity exceeds
the passive orientational relaxation rate. (vi) As expected
from symmetry considerations, director fluctuations in
stable uniaxially ordered phases are finite and do not
diverge in the limit of small wave vectors contrary to
the expectation based on Refs. [14–16]. (vii) Like active
smectics [36,37], stable uniaxial active elastomers have
finite concentration fluctuations.
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We start our demonstration of these results with polar
permanently cross-linked elastomers on substrates. Our
description involves the displacement field ūðx; tÞ about a
reference state with isotropic elasticity, the polar order
parameter field pðx; tÞ, and the velocity field vðx; tÞ.
We define a linearized strain field W ¼ CþΦI, Wij ¼
∂jūi þ ∂iūj about the isotropic state, whereC andΦ are the
trace-removed and isotropic parts of W, and I is the unit
tensor. Since the elastomer is permanently cross-linked,
there is no relative motion between mass and structure,
and the density field ρ is slaved to structural dilations
δρ=ρ0 ¼ −∇ · ū, implying that the dynamics of the density
need not be explicitly considered, and the evolution
equation for the displacement field is _̄u ¼ v.
We assume a purely relaxational dynamics for the

polarization ignoring all advective and self-advective terms
[38] _p ¼ −ΓpδF=δp, where

F ¼
Z
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is the free-energy functional governing the dynamics in
the absence of activity, with Tij ¼ pipj − ð1=2Þp2δij and
fp ¼ ðr=2Þp2 þ ðw=4Þp4 þ ðK=2Þð∇pÞ2. The generic
free-energy couplings s and t between the strain and the
polarization lead to the development of a strain anisotropy
either parallel (t > 0) or perpendicular to (t < 0) T. The
absence of these couplings, e.g., as in Refs. [13,17], would
have implied an invariance of the uniaxial solid under
independent rotations of the orientation and the elastic
network, at least in the passive limit. Their inclusion
reduces this symmetry to one under joint rotations of
the two. The force balance equation Γv ¼ fp þ∇ · σa −
δF=δū for polar systems contains active propulsive
forces fp ¼ ðυΓÞpþ ðυ1ΓÞp ·W, in addition to the
divergence of the active stress which has the usual form
σaij ¼ ζ1Tij þ ζ2p2δij [1].
We assess the effects of the active motilities and stresses

on a polarized phase with p ¼ p0x̂, where p2
0 ¼ jrj=w,

C0
ij ¼ t=μT0

ij, and Φ0 ¼ ðs=λÞp2
0, which would have been

the equilibrium state in the absence of activity. Because
of the active motility, this state has a steady velocity
v ¼ v0x̂ ¼ ðυp0 þ υ1p0W0

xxÞx̂. Expanding the fields in
small fluctuations, p ≈ ðp0 þ δpÞx̂þ p0θŷ, Cij ¼ C0

ijþ
δCij, andΦ ¼ Φ0 þ δΦ about the homogeneously oriented
state, we find that both the magnitude p0δp ¼ sδΦþ
2tδCxx=r̄, r̄ ¼ wþ ð2s2=λÞ þ 2ðt2=μÞ and the angular
fluctuations θ ¼ ½μ=tp2

0�δCxy of the polarization are slaved
to the elastic deformations. Because of the minimal
couplings between p and C, transverse fluctuations are
not independently soft, despite the spontaneous breaking
of rotation symmetry and are instead slaved to the
strain fluctuations [54]. Ignoring the symmetry-mandated

free-energy coupling μ in Eq. (1) would have led to the
incorrect conclusion that the relaxation rate of transverse
fluctuations of p vanishes with the wave number. To
analyze the displacement fluctuations about the orienta-
tionally ordered configuration, we transform to displace-
ment u and strain η relative to the anisotropic state rather
than ū and C and Φ, which were defined relative to an
isotropic reference space. Upon integrating out the δp
fluctuations, the free-energy (1) in terms of θ and u
transforms to

F ¼ 1

2

Z
x
B1η

2
xx þB2η

2
yy þB3ηxxηyy þB4½ηxy − βðθ−ΩÞ�2;

ð2Þ

where ηij ¼ ð1=2Þð∂iuj þ ∂juiÞ, the rotation angle Ω ¼
ð∂xuy − ∂yuxÞ=2:β ∈ ½−1; 1�, whose sign is that of t,
measures the degree of anisotropy of the solid. β ¼ 0 is
the isotropic case, and we refer to positive and negative
anisotropy according to sgnðβÞ. The standard analysis
leading up to Eq. (2) as well as the expressions for Bi
and β are presented in Ref. [38]. The angle θ appears with
the rotation field of the solid [54] and the shear strain, and
integrating it out leads to a vanishing of the shear modulus
[21,22,55]. This is a consequence of rotation invariance
and, in equilibrium, implies that a two-dimensional uni-
axially ordered elastomer is not a true solid since it cannot
resist shear.
In passive systems, _u would not contain terms of the

form ∂2
yuxx̂ and ∂2

xuyŷ upon integrating out the fast θ field.
However, forces arising from the divergence of the active
stress ∇ · σa ≈ p2

0ζ1ð∂yθx̂þ ∂xθŷÞ yield terms of this form
even when θ is eliminated in favor of Ωþ β−1ηxy. The
presence of these active forces implies that a shear experi-
ment on an active solid should yield a nonzero value of the
“shear modulus” (Fig. 1), which vanishes in the limit of 0
activity. Further, curiously, since the active stress depends
on both Ω, which is antisymmetric in the indices x and y,
and ηxy which is symmetric, the “modulus” measured by
shearing along or transverse to the ordering direction yields
different values. Turning to the propulsive forces and
projecting these along and transverse to the polarization,
we obtain

p̂ · fp ¼lin Γ½v0 þ ðυþ υ1W0
xxÞδpþ υ1p0δWxx�

¼ Γv0 þ a1∂xux þ a2∂yuy; ð3Þ

where ¼lin denotes equality to linear order in disturbances,
p̂ is the unit vector in the direction of polarization, a1
and a2 are obtained by replacing δp and δWxx by their
values in terms of the displacement fields [38], and

p̂⊥ · fp ¼lin Γυ1p0ðδWxy − 2θC0
xxÞ, where p̂⊥ is a unit vector

perpendicular to p̂. Since C0
xx ¼ ðt=2μÞp2

0 and
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θ ¼ ðμ=tp2
0ÞδCxy ¼ ðμ=tp2

0ÞδWxy, p̂⊥ · fp ¼ 0. Thus, there
is no propulsive force transverse to the polarization in
an elastomer with spontaneous polar order. Physically,
since the only anisotropy in the system is due to the
broken rotation symmetry, the anisotropy of W aligns with
pp on a fast timescale and at longer times, W · p is purely
parallel to p. Next, projecting the velocity along and

transverse to the polarization, we obtain p̂ · v¼lin _ux and

p̂⊥ · v¼lin _uy − v0θ, where the final term appears due to the
mean motion of the solid along x̂ [38,56,57]. Therefore,
upon transforming to a frame moving with the mean
velocity of the solid v0x̂,

_ux ¼ a1∂xux þ a2∂yuy þ b1∂2
xux þ b2∂2

yux þ b3∂x∂yuy;

ð4aÞ

_uy ¼ b4∂2
xuy þ b5∂2

yuy þ b6∂x∂yux; ð4bÞ

where b2 ¼ p2
0ζ1ð1 − βÞ=2Γβ, and b4 ¼ p2

0ζ1ð1þ βÞ=2Γβ
and b3 − b6 are purely active (see Ref. [38] for
expressions of bi). The dynamical equations (4) yield
the eigenfrequencies

ω� ¼

�
a1 þ a2b6

jb2−b5j
�
qx − ib2q2y

− a2b6
jb2−b5j qx − ib5q2y

9=
;qx ≪ q2y;

a1qx − ib1q2x − i
�
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a1
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q2y

−ib4q2x − i
�
b5 −

a2
a1
b6
�
q2y

9=
;qx ≳ q2y:

ð5Þ

This demonstrates that even in this overdamped system,
there are propagating modes along the direction of motion
with a dispersion ω ∼ q which are damped at Oðq2Þ. Since
b2 and b4 are purely active, the polar solid is stable only
when ζ1β > 0. Motility induces a further instability for a
small enough value of b2 if a2 and a1 have opposite signs.

However, in contrast to externally driven solids [34],
where terms proportional to ∂yux and ∂xuy appear in the
_uy equation even in the comoving frame leading to
eigenfrequencies that are either wavelike at small wave
vectors or have an instability with a growth rate ∝ q, the
direction of motion of crawling solids is chosen sponta-
neously forbidding a transverse buckling instability [58].
This implies that active solids may be more stable than
both their passive counterparts and externally driven ones,
establishing our result (ii).
When b2 > 0 and b4 > 0, the static structure factor

of both ux and uy fluctuations obtained by adding
Gaussian white noise to Eq. (4) scales as 1=q2 in
all directions, implying QLRO in two dimensions.
In particular, huxðq; tÞuxð−q; tÞijqx¼0 ∝ 1=ðb2q2yÞ and
huyðq; tÞuyð−q; tÞijqy¼0 ∝ 1=ðb4q2xÞ, in contrast to passive

uniaxial elastomers where these would be ∝ 1=q4, estab-
lishing our result (i) for polar systems. However, this
conclusion of the linear theory may be invalidated by nine
terms bilinear in∇uwhich are marginal in two dimensions.
Though, unlike in externally driven solids [34], rotation
invariance significantly constrains their coefficients, a
treatment including these nonlinearities is beyond the
scope of this paper. However, in a polar smectics with a
displacement variable u, the two relevant nonlinearities
ð∂xuÞ2 and ð∂yuÞ2 do not destroy the ordered phase [37]
when they have opposite signs. Therefore, we believe that
QLRO is possible even in polar solids in two dimensions
for some range of parameter values.
We now turn to apolar elastomers on substrates. The

ordering, in this case, is characterized by a rank-2 symmetric
tensor Qðx; tÞ. We again assume a purely relaxational
dynamics _Q ¼ −ΓQδFQ=δQ for the apolar order parameter
ignoring all couplings to velocity (which are irrelevant).
Here, FQ is of the form (1) with p2 being replaced by
Tr½Q2� and T by Q. Symmetry implies that apolar solids
cannot self-propel, and the active forces are [1,35,61]

fa ¼ ζ̃1∇ ·Qþ ζ̃2Q · ð∇ ·QÞ; ð6Þ

where the second is only allowed in systems not constrained
by momentum conservation [35]. An analogous force with
the same effect on stability is also allowed in polar systems
but was not considered there for simplicity. Examining the
effect of active forces on the state obtained in the absence of
activity and repeating the analysis detailed for the polar case,
we obtain the dynamical equations for _ux and _uy, which have
the same form as Eq. (4) with a1 ¼ a2 ¼ 0. Both b2 and b4
are purely active with b2 ¼ S0ðβ−1 − 1Þð2ζ̃1 þ ζ̃2S0Þ=4 and
b4 ¼ S0ðβ−1 þ 1Þð2ζ̃1 − ζ̃2S0Þ=4, where S0 denotes the
degree of apolar ordering. This implies that a stable orienta-
tionally ordered solid is only realized when ζ̃1 > jðζ̃2S0=2Þj
for β > 0 and ζ̃1 < −jðζ̃2S0=2Þj for β < 0. A negative ζ̃1,

x

y

FIG. 1. An orientationally ordered solid with a sinusoidal
distortion. The local direction of orientational ordering is denoted
by blue bars. In passive solids, such distortions are “soft,” with
the leading order restoring force due to orientational elasticity
∼∂4

xuy (i.e., no restoring force for a plane shear). Such fluctua-
tions in passive systems destroy the orientationally ordered solid
at arbitrarily low noise. Activity leads to an additional restoring
force ∼∂2

xuy whose direction when b4 > 0 is shown with bold red
arrows. This restoring force, which acts as an effective shear
modulus (0 in passive systems), leads to the existence of active
uniaxially ordered solid.
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which denotes extensile stresses in this convention, desta-
bilizes a positively uniaxial solid with nematogens aligned
along the deviatoric strain, while a positive ζ̃1 denoting
contractile active stresses, destabilizes a solid in which the
nematogens align perpendicular to the local deviatoric strain
anisotropy. This should be compared to the situation in
active smectics [36] and in cholesterics [62] or columnar
systems. Interestingly, when jζ̃2j > 2ζ̃1=S0, the orientation-
ally ordered state is destabilized; i.e., in contrast to incom-
pressible active fluids on substrates, where, depending on
the sign, it may play a stabilizing role, here ζ̃2 plays a
destabilizing role irrespective of its sign, establishing our
result (iii).
As in polar elastomers, b2 > 0 and b4 > 0 ensure that the

variances of both ux and uy fluctuations scale as 1=q2 in all
directions leading to QLRO in two dimensions establishing
result (i) for the apolar case. Unlike the polar case, this
conclusion cannot be invalidated by nonlinearities which,
due to nematic symmetry, scale as ∼∇ð∇uÞ2 and are
irrelevant in two-dimensional active apolar elastomers, in
contrast to their passive counterparts, where b2 ¼ b4 ¼ 0
render them relevant in d ≤ 3 [22,63].
Further, in three dimensions active polar and apolar

elastomers have no relevant nonlinearity and have true
long-range order unlike their passive counterparts.
Interestingly [38], even active biaxial elastomers, whose
passive analogs are softer than their uniaxial counterparts,
have long-range order in three dimensions.
We now consider uniaxial elastomeric gels, i.e., (dilute)

elastomers frictionally coupled to an incompressible per-
meating fluid, with conserved total momentum. The
velocity of the elastomer is _u ¼ v þ vr, where v is the
joint velocity of the network and the fluid, and vr is
the velocity of the network relative to their combined center
of mass. The joint velocity v obeys the force balance
equation η∇2v ¼ ∇Π − ζ̃1∇ ·Qþ δF=δu, where Π is
the pressure that enforces incompressibility, η is the
viscosity, and F is given by Eq. (2). Defining vx ¼ ∂yψ
and vy ¼ −∂xψ , where ψ is a stream function, ut ¼
ðqyux − qxuyÞ=q and ul ¼ q · u=q, we obtain _ut ¼ ijqjψ þ
Oðq2Þ and _ul ∼Oðq2Þ. The relaxation rate of ut

fluctuations, which are the ones affected by the fluid, scale
as q0 to leading order in a wave vector. In passive
elastomers, the relaxation rate of ut to Oðq0Þ has to vanish
for perturbations either purely along the ordering direction
(q ¼ qx̂) or purely transverse to it (q ¼ qŷ). However, in
active elastomers, the eigenfrequencies in these directions
are nonzero

ωðq → 0Þ ¼ −i
S0ζ̃1
2η

ðβ−1 � 1Þ; ð7Þ

where the þ (−) sign is realized for wave vectors along
x̂ (ŷ) (see Ref. [38] for the expression for all wave vector
directions). This implies that when βζ̃1 < 0, the gel is
unstable; i.e., extensile (contractile) stresses destabilize
positively (negatively) uniaxial elastomers, establishing
our result (iv). While the relaxation rate of ut fluctuations
is Oðq0Þ, the static structure factor of a stable gel ∼1=q2 in
all directions, as can be checked by adding momentum-
conserving spatiotemporally white noise to the force
balance equation.
We have assumed a fast relaxation of the angle field to

its steady-state value determined by the displacement field.
This may, however, be questionable in a gel—an orienta-
tionally ordered fluid is generically unstable with a wave-
vector-independent growth rate [1,61]. When the growth
rate of this generic instability is greater than the relaxation
of the angle field to the value dictated by the local strain, the
gel should be generically unstable irrespective of the sign
of the active stress; i.e., even though a calculation purely in
terms of displacement field predicts Eq. (7) that a con-
tractile gel with ζ̃1 > 0 is stable for β > 0, it should be
unstable beyond a critical active forcing when the coupled
dynamics of angle _θ ¼ ð1 − ξ cos 2ϕÞq2ψ=2 − ΓθδF=δθ,
with ξ being the flow-alignment parameter and Γθ the
angular relaxation rate, and displacement fields are con-
sidered. For ξ ¼ 0, an orientationally ordered contractile
fluid is maximally unstable along qy. For a contractile
uniaxial gel with ξ ¼ 0, the eigenfrequency of the coupled
ut and θ dynamics along ŷ to leading order in wave
numbers is

ω� ¼ i
8η

�
2S0ζ̃1 − B4ð1þ 4β2ΓθηÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2S0ζ̃1 − B4ð1þ 4β2Γθηg2 − 32B4ðβ − β2ÞΓθS0ζ̃1η

q �
: ð8Þ

This implies that when the active forcing S0ζ̃1=η exceeds
the passive relaxation rate of angular fluctuations
B4=2ηþ 2B4β

2Γθ, the orientational order is destabilized
even in a positively uniaxial contractile solid establishing
our result (v).
Finally, since we have argued that both δρ and θ

fluctuations scale as ∼quq in all directions of the wave

vector space, their static structure factors hjθqj2iq→0 ∼
q2hjuqj2i → const and hjδρqj2iq→0 ∼ q2hjuqj2i → const,
implying nondiverging angular fluctuations at small wave
vectors and normal (nongiant) number fluctuations, estab-
lishing our results (vi) and (vii).
We close with a brief discussion of the implications of

our work for experiments and simulations. Reference [23]
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showed that passive, periodically cross-linked actin gels
display soft elasticity through detailed simulations. Our
theory, which demonstrates that active orientationally
ordered gels must have an active shear response, implies
that the addition of myosin motors to this system must lead
to either stiffening or supersoftening. Although disorder in
passive uniaxial gels, biological or otherwise, rules out
ideal soft elasticity, we predict a large change of the shear
response of orientationally ordered gel with increasing
activity. We also look forward to the construction of
biomimetic gels, such as those composed of cross-linked
microtubules and kinesin motors, where our predictions can
be tested. Epithelial cellular layers [64] have been modeled
as active elastic solids [14,16]. Our work demonstrates
the approach required for modeling the motility of these
systems, identifies an active shear response, and predicts
that polarization fluctuations in these systems do not
diverge at small wave vectors, which can be checked,
for instance, in the assay of Ref. [16]. Our results are also
applicable to artificial systems, in particular, solids composed
of highdensities of passive beads and lowdensities of uniaxial
rods (high-density analogs of Ref. [33]) and, as discussed in
Ref. [38], our predictions for the (in)stability of active uniaxial
solids can be tested here. Further, we demonstrate in the
Supplemental Material [38] how to modify current “traveling
phase-field crystal” models [18–20] to obtain the correct
motile solid limit. Such “traveling crystals”may be observed
in either experiments or simulations of active Brownian
particles with alignment interactions [65]. A further applica-
tion of our theory, which predicts a singular change in the
mechanical properties of liquid-crystalline elastomers with
activity, is the construction of novel metamaterials. Such
materials, constructed, for instance, by cross-linking [23]
elongated photo- [66] or chemosensitive [67] colloids or actin
or microtubule filaments, will have a fundamentally different
strain response depending on the presence or absence of
light, chemicals, or motors, respectively. These may be
used to construct materials that flatten or crumple, or two-
dimensional sheets that buckle out of plane in response
to stimuli leading to stimuli-sensitive hinges or traps or
materials that self-fold [38].
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