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We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets.
The bulk bands of hybrid excitations, which are referred to as magnon polarons, are analytically shown to
be topologically nontrivial, possessing finite Chern numbers. We also show that the Chern numbers of
magnon-polaron bands and the number of band-crossing lines can be manipulated by an effective magnetic
field. For experiments, we propose to use the thermal Hall conductivity as a probe of the finite Berry
curvatures of magnon-polarons. Our results show that a simple ferromagnet on a square lattice supports
topologically nontrivial magnon polarons, generalizing topological excitations in conventional magnetic
systems.

DOI: 10.1103/PhysRevLett.123.237207

Introduction.—Since Haldane’s prediction of the quan-
tized Hall effect without Landau levels [1], intrinsic
topological properties of electronic bands have emerged
as a central theme in condensed matter physics. The band
topology can be characterized by an emergent vector
potential and associated magnetic field defined in momen-
tum space for electron wave functions, called the Berry
phase and Berry curvature, respectively [2]. The Berry
curvature is responsible for various phenomena on electron
transport such as the anomalous Hall effect [3,4] and the
spin Hall effect [5–7]. In addition, nontrivial topology of
bulk bands gives rise to chiral or helical edge states
according to the bulk-boundary correspondence [8].
Recently, research on the effects of Berry curvature on

transport properties, which was initiated for electron
systems originally, has expanded to transport of collective
excitations in various systems. In particular, magnetic
insulators, which gather great attention in spintronics
due to their utility for Joule-heat-free devices [9], have
been investigated for nontrivial Berry phase effects on their
collective excitations [10–26]: spin waves (magnons) and
lattice vibrations (phonons). Previous studies exclusively
considering either only magnons or only phonons showed
that they can have the topological bands of their own,
thereby exhibiting either the magnon Hall effect in chiral
magnetic systems [10–25] or the phonon Hall effect [26]
when the Raman spin-phonon coupling is present.
Interestingly, the hybridized excitation of magnons and

phonons, called a magnetoelastic wave [27] or magnon
polaron [28], is able to exhibit the Berry curvature and thus
nontrivial topology due to magnon-phonon interaction
[29–31], even though each of the magnon system and the
phonon system has a trivial topology. In noncollinear

antiferromagnets, the strain-induced change (called striction)
of the exchange interaction is able to generate the nontrivial
topology in the magnon-phonon hybrid system [29]. In
ferromagnets, which are of the main focus in this work,
nontrivial topology of magnon polarons is obtained by
accounting for long-range dipolar interaction [30]. In addi-
tion, in ferromagnets with broken mirror symmetry, the
striction of Dzyaloshinskii-Moriya (DM) interaction leads
to topological magnon-polaron bands [31].
In this Letter, we theoretically investigate the topological

aspects of the magnon-phonon hybrid excitation in a simple
two-dimensional (2D) square-lattice ferromagnet with
perpendicular magnetic anisotropy [see Fig. 1(a) for the
illustration of the system]. Several distinguishing features
of our model are as follows. Our model is optimized for
atomically thin magnetic crystals, i.e., 2D magnets. The
recent discovery of magnetism in 2D van der Waals
materials opens huge opportunities for investigating unex-
plored rich physics and future spintronic devices in reduced
dimensions [32–42]. Because we consider the 2D model,
we ignore the nonlocal dipolar interaction, which is not a
precondition for a finite Berry curvature in 2D magnets.
Moreover, the Berry curvature we find does not require a
special spin asymmetry such as the DM interaction nor a
special lattice symmetry: Our 2D model description is
applicable for general thin film ferromagnets. Therefore,
we show in this work that even without such long-range
dipolar interaction, DM interaction, or special lattice
symmetry, the nontrivial topology of a magnon-phonon
hybrid can emerge by taking account of the well-known
magnetoelastic interaction driven by Kittel [43,44]. As
Kittel’s magnetoelastic interaction originates from the
magnetic anisotropy, which is ubiquitous in ferromagnetic
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thin film structures [45], our result does not rely on specific
preconditions but is quite generic. Furthermore, we
show that the topological structures of the magnon-polaron
bands can be manipulated by effective magnetic fields via
topological phase transition. We uncover the origin of the
nontrivial topological bands by mapping our model to the
well-known two-band model for topological insulators [7],
where the Chern numbers are read by counting the number
of topological textures, called skyrmions, of a certain vector
in momentum space. At the end of this Letter, we propose
the thermal Hall conductivity as an experimental probe for
our theory.
Model.—Our model system is a 2D ferromagnet on a

square lattice described by the Hamiltonian

H ¼ Hmag þHph þHmp; ð1Þ

where the magnetic Hamiltonian is given by

Hmag ¼ −J
X
hi;ji

Si · Sj −
Kz

2

X
i

S2i;z − B
X
i

Si;z; ð2Þ

where J > 0 is the ferromagnetic Heisenberg exchange
interaction, Kz > 0 is the perpendicular easy-axis
anisotropy, and B is the external magnetic field applied
along the easy axis. Throughout the Letter, we focus on the
case where a ground state is the uniform spin state along
the z axis: Si ¼ ẑ. The phonon system accounting for the
elastic degree of freedom of the lattice is described by the
following Hamiltonian:

Hph ¼
X
i

p2
i

2M
þ 1

2

X
i;j;α;β

uαiΦ
α;β
i;j u

β
j ; ð3Þ

where ui is the displacement vector of the ith ion from its
equilibrium position, pi is the conjugate momentum vector,
M is the ion mass, and Φα;β

i;j is a force constant matrix. The
magnetoelastic coupling is modeled by the following
Hamiltonian term [43,44,46]:

Hmp ¼ κ
X
i

X
e

ðSi · eÞðuzi − uziþeÞ; ð4Þ

where κ is the strength of the magnon-phonon interaction
and e’s are the nearest neighbor vectors. Equation (4)
describes the magnetoelastic coupling as a leading order in
the magnon amplitude, where the in-plane components of
the displacement vector do not appear (see Supplemental
Material [47] for derivation).
We note here that our model Hamiltonian does not

include the dipolar interaction and the DM interaction,
distinct from the model considered in Refs. [30] and [31].
Because the above-mentioned interactions are absent in our
model, neither the ferromagnetic system nor elastic system
exhibits the thermal Hall effect when they are not coupled.
In other words, they are invariant under the combined
action of time reversal (T ) and spin rotation by 180° around
an in-plane axis (C) [31]. It is the magnetoelastic coupling
term Hmp that breaks the combined symmetry T C and thus
can give rise to the thermal Hall effect as will be shown
below.
Magnon-phonon hybrid excitations.—We first diagonal-

ize the magnetic Hamiltonian Hmag and the phonon
Hamiltonian Hph separately, and then obtain the magnon-
phonon hybrid excitations, which are called magnon polar-
ons, by taking account of the coupling term Hmp.
The magnetic Hamiltonian is solved by performing the

Holstein-Primakoff transformation Sxi ≈ð
ffiffiffiffiffiffi
2S

p
=2Þðaiþa†i Þ,

Syi ≈ ð ffiffiffiffiffiffi
2S

p
=2iÞðai − a†i Þ, Szi ¼ S − a†i ai, where ai and a†i

are the annihilation and the creation operators of a magnon
at site i. By taking the Fourier transformation, ai ¼P

k e
ik·Riak=

ffiffiffiffi
N

p
, where N is the number of sites in the

system, we diagonalize the magnetic Hamiltonian in the
momentum space:

Hmag ¼
X
k

ℏωmðkÞa†kak; ð5Þ

where the magnon dispersion is given by ωmðkÞ ¼
½2JSð2 − cos kx − cos kyÞ þ KzSþ B�=ℏ.
For the elastic Hamiltonian Hph, it is also convenient to

describe in the momentum space:
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FIG. 1. (a) The schematic illustration of the magnon and
phonon system. The ground state of the magnetization is given
by the uniform spin state along the z axis (red arrow). (b) The
Chern number of our magnon-phonon hybrid system. Heff
represents the effective magnetic field including the anisotropy
field and the external magnetic field, Heff ¼ KzSþ B. (c),
(d) Band dispersions without an external magnetic field B.
The used parameter values are given in the main text.

PHYSICAL REVIEW LETTERS 123, 237207 (2019)

237207-2



Hph ¼
X
k

�
pz
−kp

z
k

2M
þ 1

2
uz−kΦðkÞuzk

�
; ð6Þ

where only nearest-neighbor elastic interactions are main-
tained as dominant terms and the momentum-dependent
spring constant is ΦðkÞ ¼ Mω2

0ð4 − 2 cos kx − 2 cos kyÞ,
where the characteristic vibration frequency ω0 corre-
sponds to the elastic interaction between two nearest-
neighbor ions. To obtain the quantized excitations of the
phonon system, we introduce the phonon annihilation
operator bk and the creation operator b†k in such a way that

uzk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
MωpðkÞ

s �
bk þ b†−kffiffiffi

2
p

�
; ð7Þ

pz
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏMωpðkÞ

q �
b−k − b†kffiffiffi

2
p

i

�
; ð8Þ

where the phonon dispersion is given by ωpðkÞ ¼
ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2 cos kx − 2 cos ky

p
. This leads to the following

diagonalized phonon Hamiltonian:

Hph ¼
X
k

ℏωpðkÞ
�
b†kbk þ 1

2

�
: ð9Þ

In terms of the magnon and phonon operators introduced
above, the magnetoelastic coupling term is recast into the
following form in the momentum space: Hmp ¼ Hmp1þ
Hmp2, where

Hmp1 ¼ κ̃
X
k

½a†kbkð−i sin kx þ sin kyÞ� þ H:c:; ð10Þ

Hmp2 ¼ κ̃
X
k

½a†−kb†kði sin kx − sin kyÞ� þ H:c:; ð11Þ

with κ̃ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏS=½MωpðkÞ�

p
. Note that Hmp1 conserves the

total particle number, whereas Hmp2 does not. Because
of Hmp2, the total Hamiltonian takes the Bogoliubov–
de-Gennes (BdG) form.
The band structure of the magnon-phonon hybrid system

is obtained by solving the Heisenberg equations with the
above results [Eqs. (1)–(10)] (see the Supplemental
Material [47] for the detailed calculation and the schematic
illustration of the band structure [47]). Without magnon-
phonon interaction, there are two positive branches con-
sisting of a magnon band and a phonon band. The two
bands cross at k points satisfying ωmðkÞ ¼ ωpðkÞ [see
Fig. 1(c)]. Different from the conventional Dirac system,
there are innumerable band-crossing points which form a
closed line. These band-crossing lines are removed by the
magnon-phonon interaction ∝ κ [see Fig. 1(d)], which
induces the nontrivial topological property of the bands,

characterized by the Berry curvatures. In the BdG
Hamiltonian, the Berry curvature is given by [19,29,31]

ΩnðkÞ ¼ ∇ ×AnðkÞ; ð12Þ

where An ¼ ihψn;kjJ∇kjψn;ki and ψn;k are the nth eigen-
states (see Supplemental Material [47] for details). The
topological property of the whole system is determined by
the Chern number of bands, which is the integral of the
Berry curvature over the Brillouin zone [48]. In Fig. 1(b),
we show the Chern number of our bosonic system with
nonzero magnon-phonon interaction κ. In our system, the
Chern number can be one of three integers (0, 1, and 2)
depending on the effective magnetic field Heff ¼ KzSþ B
and exchange interaction J. This is one of our central
results: The magnon-polaron bands in a 2D simple square-
lattice ferromagnet are topologically nontrivial even in the
absence of dipolar or DM interaction and their topological
property can be controlled by the effective magnetic field.
Origin of the topological property.—The origin of the

nontrivial magnon-polaron bands obtained above can be
understood through the mapping of our system to the
well-known model for two-dimensional topological insula-
tors such as HgTe [7,48]. Considering Hmp as a weak
perturbation with unperturbed Hamiltonian with well-
defined energies of magnons and phonons, the effect of
the particle-number-nonconserving component Hmp2 on
the band structure is much smaller than that of particle-
number-conserving part Hmp1. Neglecting Hmp2, the total
Hamiltonian is simplified into a single-particle two-band
Hamiltonian

H ≈
X
k

�
a†k b†k

�
Hk

�
ak
bk

�
; ð13Þ

where

Hk ¼
�

ℏωmðkÞ κ̃ðsin ky − i sin kxÞ
κ̃ðsin ky þ i sin kxÞ ℏωpðkÞ

�
: ð14Þ

In terms of the Pauli matrices σ ¼ ðσx; σy; σzÞ, we write
Eq. (14) in a more compact form

Hk ¼ ℏ
2
½ωmðkÞ þ ωpðkÞ�I2×2 þ dðkÞ · σ; ð15Þ

where

dðkÞ ¼
�
κ̃ sin ky; κ̃ sin kx;

ℏ
2
½ωmðkÞ − ωpðkÞ�

�
: ð16Þ

The band structure for the above Hamiltonian is given by

E�ðkÞ ¼
ℏ
2
½ωmðkÞ þ ωpðkÞ� � jdðkÞj: ð17Þ
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In terms of d vectors, the Berry curvature is written
explicitly as

Ωz
�ðkÞ ¼ ∓ 1

2
d̂ðkÞ ·

�∂d̂ðkÞ
∂kx ×

∂d̂ðkÞ
∂ky

�
: ð18Þ

The corresponding expression for the Chern number is
given by [48–50]

C� ¼ 1

2π

Z
dkxdkyΩz

�ðkÞ; ð19Þ

which is the skyrmion number of the d vector [48],
counting how many times d̂ wraps the unit sphere in the
Brillouin zone. From Eq. (14), we read that the magnon
band and phonon band cross at k points satisfying
ωmðkÞ ¼ ωpðkÞ without the magnon-phonon interaction.
These band crossing points are opened by the magnon-
phonon interaction ∝ κ and the finite Berry curvatures are
induced near the gap opening region. After integrating
the Berry curvatures over the Brillouin zone, we obtain
C� ¼ 0, �1, or �2. The two-band model has almost
identical band structures and Berry curvatures to those
of full Hamiltonian, where Hmp2 is additionally considered
(see the Supplemental Material [47]).

In Figs. 2 and 3, we show that the bulk band structures
and their topological properties for jCj ¼ 1 and jCj ¼ 2,
respectively. For calculation, we use the parameters of the
monolayer ferromagnet CrI3 in Refs. [31,33,36,51]
(J ¼ 2.2 meV, Kz ¼ 1.36 meV, S ¼ 3=2, and Mc2 ¼
5 × 1010 eV). The force constant between the nearest-
neighbor phonon is assumed as ℏω0 ¼ 10 meV. We use
κ ¼ 5 meV= Å and a lattice constant a ¼ 5 Å, yielding
κS2=a2 ≈ 7.2 × 107 J=m3, which is comparable in magni-
tude with magnetoelastic constant in a Co film [52]. The
external magnetic field B ¼ −1 meV is chosen for Fig. 2
and B ¼ 1 meV is chosen for Fig. 3. In Figs. 2(a) and 2(c),
we find a band-crossing line (red dashed line), which is
removed by the magnon-phonon interaction [Figs. 2(b) and
2(e)]. In this case, a dominant contribution of the Berry
curvature comes from the vicinity of the Γ point [Fig. 2(g)].
An intuitive way to verify the topological nature of the
system is the number of skyrmions of the unit vector d̂ðkÞ.
In Fig. 2(h), we find that there is a skyrmion at the Γ-point
corresponding to jCj ¼ 1. By changing the sign of the
external magnetic field B, we can modify the band structure
with two band-crossing lines [Figs. 3(a), 3(c), and 3(d)]. In
this case, the dominant contribution of the Berry curvature
comes from vicinity of the Γ and M points [Fig. 3(g)]. In
terms of d̂ðkÞ, we find that one skyrmion is located at the Γ
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FIG. 2. The band structure and its topology for the jCj ¼ 1

case. The band structure for κ ¼ 0 (a),(c),(d) and κ ¼ 5 meV=Å
(b),(e),(f). The red-dashed line represents the band-crossing
points. (g) Berry curvatures of the upper band in log scale
ΓðΩzÞ ¼ sgnðΩzÞ logð1þ jΩzjÞ for κ ¼ 5 meV=Å (h) Schematic
illustration of d̂ðkÞ for κ ¼ 5 meV=Å. The in-plane components
(d̂x, d̂y) are shown in red arrows.
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point and the other skyrmion is at the M point correspond-
ing to jCj ¼ 2 [Fig. 3(h)]. We note that the magnetic atoms
in CrI3 form a honeycomb lattice, differing from a square
lattice considered here. However, regardless of the lattice
structure, our description based on a square lattice is still
valid on Γ-point physics, which is characterized by long-
wavelength excitations. The M-point physics in the honey-
comb lattice structure would be different from our model.
Thermal Hall effect.—The finite Berry curvatures of

magnon-phonon hybrid excitations give rise to the intrinsic
thermal Hall effect as shown below. The semiclassical
equations of motion for the wave packet of the magnon-
phonon hybrid are given by [2,53]

_rn ¼
1

ℏ
∂EnðkÞ
∂k − _k ×ΩnðkÞ; ℏ _k ¼ −∇UðrÞ; ð20Þ

where UðrÞ is the potential acting on the wave packet,
which can be regarded as a confining potential of the
bosonic excitation. Near the edge of the sample, the
gradient of the confining potential produces the anomalous
velocity, ∇UðrÞ ×ΩnðkÞ. In equilibrium, the edge current
circulates along the whole edge and the net magnon current
is zero along any in-plane direction. However, if the
temperature varies spatially, the circulating current does
not cancel, which causes the thermal Hall effect [12].
The Berry-curvature-induced thermal Hall conductivity

is given by [12,13]

κxy ¼ −
k2BT
ℏV

X
n;k

c2ðρn;kÞΩz
nðkÞ; ð21Þ

where c2ðρÞ ¼ ð1þ ρÞln2½ð1þ ρÞ=ρ� − ln2ρ − 2Li2ð−ρÞ,
ρn;k ¼ ½e½EnðkÞ�=kBT−1�−1 is the Bose-Einstein distribution
function with a zero chemical potential, kB is the
Boltzmann constant, T is the temperature, and Li2ðzÞ is
the polylogarithm function. In Fig. 4(a), we show the
dependence of thermal Hall conductivity on the effective
magnetic field Heff at different temperatures T. For
small Heff , the thermal Hall conductivity increases with
increasing Heff . However, for large Heff , it decreases with

increasing Heff . This behavior of the thermal Hall conduc-
tivity can be understood through the Chern number of
magnon-polaron bands depicted in Fig. 4(b). The absolute
value of the Chern number is 1 for small Heff , then it
jumps up to 2 for a certain value of Heff and vanishes for
large Heff .
Discussions.—In this Letter, we investigate the topology

of the magnon-polaron bands in a simple 2D ferromagnet
without long-range dipolar interaction and DM interaction.
In our model, the topological structure can be controlled by
the effective magnetic field which changes the number of
band-crossing lines. Using a perturbation approach, we
develop a two-band model Hamilitonian which provides an
intuitive understanding of the topological structure of the
model. In the two-band model, the nontrivial topology of
the magnon-polaron bands are reflected in the skyrmion
number of dðkÞ in momentum space. As an experimental
demonstration, we propose that the thermal Hall conduc-
tivity arises from the nontrivial topology of the magnon-
polaron bands. The thermal Hall conductivity depends on
the effective magnetic field, which can be manipulated by
the external magnetic field or voltage-induced magnetic
anisotropy change [54]. Our results show that the magne-
toelastic interaction generates nontrivial topology in simple
2D ferromagnets with topological tunability, suggesting the
ubiquity of topological transports in conventional magnetic
systems with reduced dimensions.
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