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We discuss quasi-one-dimensional magnetic Mott insulators from the pyroxene family where
spin and orbital degrees of freedom remain tightly bound. We analyze their excitation spectrum and
outline the conditions under which the orbital degrees of freedom become liberated so that the
corresponding excitations become dispersive and the spectral weight shifts to energies much smaller
than the exchange integral.

DOI: 10.1103/PhysRevLett.123.237204

Introduction.—During the last 30 years a great theoreti-
cal effort has been directed at the research on quantum
liquids where spin ordering either does not occur or the
transition temperature is strongly reduced by fluctuations.
Quantum liquids play an important role in all kinds of
theoretical scenarios for exotic matter states. Quantum
fluctuations increase when the symmetry manifold is
extended from the ubiquitous SU(2) to a higher symmetry,
for instance, SUðNÞ. In practice such extension can occur
only when orbital degrees of freedom (d.o.f.) are included
which is difficult since the orbital degeneracy is usually
lifted by the lattice. In this Letter we suggest that magnetic
insulators from the so-called pyroxene family may provide
a possible path to overcome these difficulties.
Pyroxenes are quasi-one-dimensional Mott insulators

where spin and orbital d.o.f. remain tightly bound even
at low energies. They compose a rich class of minerals with
chemical formula AMðSi;GeÞ2O6 where A is mostly an
alkali metal element and M a trivalent metal element. For
example, greenish NaAlSi2O6 is a famous Chinese jade
called Fei Tsui. The systems with partially filled d shells of
the M ions commonly possess nontrivial magnetic proper-
ties ranging from antiferromagnetic (AF), ferromagnetic
(FM), and spin glassy and likely to be multiferroics, as seen
in NaFeSi2O6, LiFeSi2O6, and LiCrSi2O6 [1]. Their crystal
structures contain characteristic zigzag chains of edge-
sharing MO6 octahedra (Fig. 1). The chains are bridged by
the O-Si-O or O-Ge-O bonds, or, in other words, are
separated by SiO4 or GeO4 tetrahedra, thus confining the
motion of valence electrons to the chains.
In this Letter we discuss pyroxenes withM ¼ Ti and Ru,

where the lowest t2g orbitals well separated from the e2g
ones are occupied either by a single electron (Ti) or a single
hole (Ru). At present only NaTiSi2O6 has been experi-
mentally studied. Like the V4þ ions in the straight-chain
system VO2, the Ti3þ ions in NaTiSi2O6 have the 3d1

valence electron configuration and undergo the Ti-Ti
dimerization upon cooling. The zigzag chain pattern makes

it more apparent that all spin, orbital, and lattice d.o.f. are
active, leading to two-orbitally assisted Peierls transition
[2–4] that generates spin-singlet dimers on the short Ti-Ti
bonds [5] with the spin gap of ∼53 meV [6], rather than a
gapless long-range antiferromagnetic (AF) state in VO2.
Note that the ordinary spin-Peierls transition seems not to
work here because the doubled periodicity is not consistent
with the quarter filling of the electronic bands. An early
density-functional theory (DFT) study focused on the high-
temperature nondimerized structure of NaTiSi2O6 attrib-
uted the spin gap to the spin-one (S ¼ 1) Haldane type due
to the ferromagnetic Ti-Ti interaction [7]. A subsequent
DFT calculation with a U correction showed that the
dominant magnetic interaction was the AF one along the
Ti-Ti short bonds, supporting the picture of S ¼ 0 spin
dimers [8]. However, an outstanding puzzle is that the
heat capacity data show the gap ∼10 meV [5] suggesting
the existence of softer excitations and stronger quantum
fluctuations.
We approach the problem using a combination DFT,

analytic, and time-dependent density-matrix renormali-
zation group (DMRG) methods to study their orbital
and spin dynamics. The stronger quantum fluctuations
originate from the involvement of the third t2g orbital,
which becomes active when the oxygen-atom-mediated
electron hopping integral is comparable to the direct
hopping integral between neighboring M atoms [1,9,10].
Hubbard model and the Sutherland Hamiltonian.—We

start with a microscopic derivation of the three-orbital
model Hamiltonian [11] assuming a single electron or hole
occupation of the t2g orbital. The strong on site Coulomb
interaction UðN − 1Þ2 opens a charge gap ∼U preventing
direct transitions to states with different occupation num-
ber. To describe the low energy dynamics we have to
integrate out the high-energy d.o.f. as it is done in the
conventional SU(2) invariant Hubbard model [17]. Here,
each M cation is coordinated with six O2− anions and the
MO6 octahedra are edge sharing to form the zigzag chain in
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the crystallographical a axis (Fig. 1). The five d-shell
orbitals of the M ion are well separated by the ligand field
into the high-energy eg (3z2 − r2 and x2 − y2) and low-
lying t2g (xy, yz, zx) orbitals. The latter orbitals are relevant
to the low-energy physics. If one neglects all factors leading
to violation of the SU(6) symmetry, such as the splitting of
the t2g orbitals and the Hund’s interaction and adopts a
diagonal tunneling matrix with identical matrix elements t
for all orbitals, the result for U ≫ t is the SU(6)-symmetric
Sutherland Hamiltonian:

H ¼ J
X
k

Po;s
k;kþ1; J ¼ 2t2

U
; ð1Þ

where Po;s ¼ Po ⊗ Ps is the permutation operator acting in
6 × 6-dimensional space of spin and orbital quantum
numbers and Ps

k;kþ1 ¼ 2Sk · Skþ1 þ 1=2 and Po
k;kþ1 ¼

2TkTkþ1 þ 1=2, where Sa, Ta are spin and isospin
S ¼ 1=2 operators acting on the spin and orbital subspaces,
respectively. Model (1) is integrable, the spectrum consist-
ing of collective orbital and spin excitations is gapless [18].
The excitations (spinons) are fractionalized, they carry spin
and orbital quantum numbers of electrons (except the
charge one which is gapped). The spin spectral function
is presented on Fig. 2(a).
In reality the SU(6) symmetry is broken due to the crystal

field and anisotropy of the exchange integrals originating
from (i) the difference between tunneling matrix elements
of different orbital states and (ii) the Hund’s coupling.
Since the lowest d orbital is occupied by one electron
(hole), the Hund’s coupling affects only the excited states.
As shown in Fig. 3(a), the strong electron hopping integrals
are the head-on dzx − dzx (between the first and second M
atoms) and the head-on dxy − dxy (between the forth and
fifthM atoms), whose strength is referred to as t1 [depicted
as solid arcs in Fig. 3(b)]. Yet, for the edge-sharing t2g
connections, it is known that the oxygen p-orbital-mediated
shoulder-to-shoulder hopping paths, e.g., the dzx−pz−dyz
between the second and thirdM atoms in Fig. 3(a), may be
as strong [1,9,10]. These indirect paths are referred to as t2
[the dashed lines in Fig. 3(b)]. Note that the M yz orbitals
are involved in the t2 paths only [Fig. 3(b)]; therefore, in the
limit of small t2 or large t2g splitting Δ (i.e., the yz orbital is
higher in energy by Δ than the xy and zx orbitals), dyz

FIG. 1. Crystal structure of Na MSi2O6.

FIG. 2. Spin spectral function in the folded Brillouin Zone for
various values of t2=t1 and the crystal field. With increase of Δ=J
or the anisotropy the spectral weight shifts toward the dimerized
configuration where the singlet-triplet gap is equal to 2J ¼
4t22=ðU − ΔÞ corresponding to the breaking of a dimer.

FIG. 3. (a) A graphic description of a dimerized state for an
isolated NaMSi2O6 chain. Only t2g orbital ofM ions are depicted.
(b) The original tunneling scheme. (c) The tunneling scheme with
relabeled orbitals. We relabel the orbitals on different sites to
make the tunneling diagonal. The solid lines correspond to matrix
element t1, the dashed lines corresponds to matrix element t2.
(d) The dimerization pattern in the presence of crystal field. The
orbitals on which spin singlets form are shown by thick lines.
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becomes irrelevant, yielding the minimal two-orbital model
[2–4]. On the other hand, for a considerable t2 and small Δ,
the t1 and t2 paths seem to be highly entangled as shown in
Fig. 3(b); however, following the red, blue, and green lines,
we found that they can be completely decoupled to form
three degenerate hopping paths as shown in Fig. 3(c). In
this sense, the most remarkable property of NaMSi2O6 is
that its electronic band is exactly three times as degenerate.
In real space the degeneracy is reflected as the following
property of the single electron wave functions: ψbðkþ1Þ¼
ψbðkÞ¼ψcðk−1Þ.
The corresponding band Hamiltonian in notations

depicted on Fig. 3(c) has three M sites in the unit cell
and is expressed as follows:

H ¼ −
X

k;α¼a;b;c

ψþ
α;σðkÞ

0
B@

0 t1 t2e−3ik

t1 0 t2
t2e3ik t2 Δ

1
CAψα;σðkÞ:

The spectrum is determined by the cubic equation

ϵ3 − ϵ2Δ − ϵð2t22 þ t21Þ þ Δt21 − 2t1t22 cos 3k ¼ 0: ð2Þ

At t1 ¼ t2, Δ ¼ 0 the solution is ϵ ¼ 2t cos k. The band is
1=6th filled with kF ¼ π=6. At t2 ≠ t1 and Δ ≠ 0, spectral
gaps appear at k ¼ �π=3, �2π=3 corresponding to the
perturbations with wave vectors q ¼ �2π=3,�4π=3. Since
they do not coincide with 2kF, the weakly interacting
electron system would remain gapless [19]. However, for
the Mott insulator this is no longer the case. Besides the
charge (Mott) gap the anisotropy generates spectral gaps in
all other sectors. This is obviously related to the fact that the
perturbations around the SU(6) symmetric point generate
relevant operators with the wave vector 4kF.
Integrating over the high energy states we obtain the

following Hamiltonian:

H ¼ 2t22
U − Δ

X
k

Po;s
k;kþ1 þ Δ

X
k

½Xaað3kþ 2Þ þ Xbbð3kÞ þ Xccð3kþ 1Þ�Î þ
X
k

δVk; ð3Þ

δVk¼2

�
t21
U
−

t22
U−Δ

�

× ½P̂s
3k;3kþ1Xaað3kÞXaað3kþ1Þþ P̂s

3kþ1;3kþ2Xbbð3kþ1ÞXbbð3kþ2Þþ P̂s
3kþ2;3kþ3Xccð3kþ2ÞXccð3kþ3Þ�

þ2t2

�
t1
U
−

t2
U−Δ

�
f½P̂s

3k;3kþ1Xabð3kÞXbað3kþ1Þ

þ P̂s
3kþ1;3kþ2Xabð3kþ1ÞXbað3kþ2Þþ P̂s

3kþ2;3kþ3Xacð3kþ2ÞXcað3kþ3Þ�þH:c:gþ2t2ðt1− t2Þ
U−Δ

×f½P̂s
3k;3kþ1Xacð3kÞXcað3kþ1Þþ P̂s

3kþ1;3kþ2Xbcð3kþ1ÞXcbð3kþ2Þþ P̂s
3kþ2;3kþ3Xbcð3kþ2ÞXcbð3kþ3Þ�þH:c:g;

ð4Þ

where Ps
k;kþ1 is the spin permutation operator and Xab are

Hubbard operators acting on orbital indices, defined as
ðXpqÞαβ ¼ δαpδ

β
q. In [11] where the derivation is given, this

Hamiltonian is written in terms of the isospin operators Ta.
Since the Hund’s coupling is just affects the anisotropy of
the exchange integrals, we set it to zero to simplify the
calculations restricting the consideration to various values
of t2=t1 and Δ.
To get the overall picture of the correlations, we used the

DMRG method [20,21] to calculate the imaginary part of
the correlation function:

Sðω; qÞ ¼
X
k

Z
∞

0

dthSzkðtÞSzmð0Þieiωtþiqðk−mÞ; ð5Þ

where Szk is the spin projection operator acting on site k.
The spectral weight contains rich information about the
excitation spectrum of the model. We carry out calculations

with a Suzuki-Trotter decomposition of the evolution
operator [22,23] and a time step δt ¼ 0.1 in units of
1=J. We have been able to study chains with up to 48
unit cells (L ¼ 144 sites) using up to 1600 DMRG states
for the time evolution, and 5000 for ground state calcu-
lations, that translates into a truncation error of 10−5 and
10−8, respectively, for the gapless case (similar accuracy is
obtained in the gapped case with a smaller basis size). Most
time-dependent simulations were conducted on chains with
24 unit cells (L ¼ 72 sites). The local space of configu-
rations has dimension of 6, but we use Uð1Þ symmetry
corresponding to Sz and density conservation for each
orbital channel (four quantum numbers in total). The
density for each orbital sector is fixed at n ¼ 1=3, while
the spin is set to Sz ¼ 0. This is equivalent to density
n ¼ 1=6 in the SUð6Þ chain [24]. We calculate the spectral
function in real time and space with open boundary
conditions, and Fourier transform it to obtain resolution
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in momentum and frequency following the prescription
outlined in [22,23,25].
Limit of small Δ=J, t2=t1 ¼ 1.—Having a broader aim

than a particular case of NaTiSi2O6, we deem it instructive
to start with the SU(6)-invariant model. The limit Δ ¼ 0,
t2 ¼ t1 allows an analytical treatment. The thermodynam-
ics and the excitation spectrum are extracted from Bethe
ansatz. At low energies the spectral function can be
analyzed by means of conformal field theory. At higher
energies one can also use the 1=N expansion.
The spectrum of the SU(6) symmetric model is gapless

and the spectral weight is centered at q ¼ �π=3 which
corresponds to �2kF. The spectral function also looks
squeezed into the region

4J sinðq=2Þ sin jkF − q=2j < ω < 4J sinðq=2Þ ð6Þ

corresponding to two-spinon emission. This agrees well
with 1=N picture where the spin operators are represented
as bilinears of weakly interacting fermions. In the presence
of anisotropy spectral gaps open at q ¼ �2kF ¼ �π=3
shown in Fig. 2 meaning that the anisotropy generates a
relevant operator which carries momentum 4kF. Such an
operator exists at the SU(6) quantum critical point; it
transforms according to the representation of the SU(6)
group with the Young tableau consisting of a vertical
column with two boxes. The scaling dimension is
d ¼ 2ð1 − 1=NÞ ¼ 5=3. The presence of such perturbation
also leads to spontaneous dimerization [see Figs. 3(a), 3(d),
and 5]. This order breaks a discrete (translational) sym-
metry, all other fluctuations are gapped and short range.
Obviously, small perturbations preserve the SU(6) structure
of the particle multiplets such that spin and orbital
excitations are degenerate. The spectral gaps grow slowly
with Δ=J as shown on Fig. 4 due the high value of the
scaling dimension of the perturbing operator. The SU(6)
symmetry is preserved at low energies: Fig. 4 shows that at
Δ=J < 0.4 a difference between the gaps for excitations
with different quantum numbers is practically undetectable.
At larger anisotropies the multiplets will be split.
Limit of large Δ=J.—The easiest way to understand the

dimerization phenomenon is to consider the limit of large
crystal field. For J ¼ 0 each site has two degenerate
orbitals in the ground state. For sites 3n it may be
ða; bÞ, for sites 3nþ 1 − ða; cÞ, for 3nþ 2 − ðb; cÞ [see
Fig. 3(d)], etc. At J ≠ 0 the degeneracy is lifted and the
ground state becomes dimerized. One possible sequence of
occupied orbitals is ða; a; b; b; c; c;…Þ which corresponds
to a nonvanishing exchange between sites (3n, 3nþ 1),
(3nþ 2, 3nþ 3), etc. [see Fig. 3(d)]. The other sequence is
ðb; c; c; a; a;…Þ with a nonvanishing exchange between
(3nþ 1, 3nþ 2), (3nþ 3, 3nþ 4), etc. So, in the limit of
infinite Δ the ground state consists of isolated periodically
arranged spin dimers. Our numerical calculations demon-
strate that the dimerization persists down to smallest values

of Δ=J (see Fig. 5). It leads to two major effects for the
spectrum opening gaps for all excitations and leading to a
progressive shift of the spectral weight towards frequency
ω ¼ 2J corresponding to the breaking of an isolated dimer
[see Figs. 2(c) and 2(d)]. Nevertheless, there is some weight
at about J=2–13 meV, given 2J ≃ 53 meV [6], in agree-
ment with the gap seen in the heat capacity data [5].
According to the first-principles calculations andWannier

function analysis [11,17], NaTiSi2O6 has the following
parameters: U ¼ 3.8 eV, JH ¼ 0.8 eV, t1 ¼ 0.203 eV,
t2=t1 ¼ 0.21, t21=U ≈ 0.01 eV. Hence in NaTiSi2O6 the
deviation from t2=t1 ¼ 1 is quite significant. However,

FIG. 4. Numerical results for the lowest spectral gaps for
various values of the crystal field Δ and t2 ¼ t1.

FIG. 5. Dimerization for various values of the crystal field
Δ and t2 ¼ t1. (a) Nearest neighbor spin-spin correlation;
(b) density-density correlation in the orbital channel; (c) sche-
matic illustration of the spin-orbital order in the limit of large Δ:
dashed lines represent orbitals that are projected out. Charge
fluctuations are suppressed and charge is frozen in the depicted
pattern. Spin is only allowed to interact in pairs forming
independent singlets.
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due to the well-known double counting issue on the LDAþ
U approach to correlated materials, the value of Δ is
uncertain and is taken as a free parameter. As we have seen
at such values of anisotropy and crystal field the excitations
are gapped and practically dispersionless [Figs. 2(d), 2(f),
and 2(g)] corresponding to the local dimers discussed above.
This is the situation in NaTiSi2O6 which thus fails our
expectations for an orbital spin liquid. However, as follows
from Figs. 2(b) and 2(c), at moderate values of the
anisotropy and crystal field there is a significant spectral
weight at small energies. The spectral function bears some
resemblance to the SU(6)-symmetric one, which is a sign
that the orbital d.o.f. are not quenched. Such situation may
exist in the ruthenium- or osmium-based pyroxenes where
Ru3þ orOs3þ ions contain one t2g hole. These are candidates
for liquids with tightly bound spin and orbital excitations. In
the early 3d transition-metal oxides such as the titanium
oxide, the 3d energy is considerably different from the
oxygen p orbitals, which creates the barrier that hinders the
indirect hopping t2. However, t2 may become dominant as
in, for example, Na2IrO3 and RuCl3 to induce the Kitaev-
type spin frustration [10]. Specifically, consideringRu3þ has
almost the same Shannon ionic radii as Ti3þ, we did similar
first-principles calculations for NaRuSi2O6 [11]. We found
that t2=t1 ¼ 0.64 (t1 ¼ 0.132 eV), which is much more
favorable than theNaTiSi2O6 case. In addition, the yz orbital
moves higher in energy, which is closer to and mixed with
the hole bands of the xy and zx characters. Moreover, the
experimentally observed large bond dimerization is favored
in the first-principles calculation for NaTiSi2O6, but not for
NaRuSi2O6. Thus, it would be interesting to synthesize
NaRuSi2O6 and compare its low-energy physical properties
with the present theory.
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