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In high-mobility materials, conduction electrons can form a viscous fluid at low temperatures.
We demonstrate that in a high-frequency flow of a two-dimensional electron fluid in a magnetic field
the two types of excitations can coexist: those of the shear stress (previously unknown transverse
magnetosound) and those associated with the charge density (conventional magnetoplasmons). The
dispersion law and the damping coefficient of transverse magnetosound originate from the time dispersion
of the viscosity of the fluid. Both the viscoelastic and the plasmonic components of the flow exhibit the
recently proposed viscoelastic resonance that is related to the own dynamics of shear stress of charged
fluids in a magnetic field. We argue that the generation of transverse magnetosound, manifesting itself by
the viscoelastic resonance, is apparently responsible for the peak in photoresistance and peculiarities in
photovoltage observed in ultrahigh-mobility GaAs quantum wells.
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Introduction.—In materials with sufficiently weak dis-
order, quasiparticles can form viscous fluids provided that
the interparticle momentum-conserving collisions are much
more intensive than any other collisions which do not
conserve momentum [1,2]. The hydrodynamic regime of
phonon transport in liquid helium and dielectrics was
studied in detail several decades ago [3]. However, only
recently the hydrodynamic regime of charge transport was
discovered in novel materials: graphene, Weyl semimetals,
and the best-quality GaAs quantum wells [4–16]. These
discoveries were accompanied by an extensive develop-
ment of theory [17–35].
High-frequency dynamics of a viscous electron fluid in a

zero magnetic field was theoretically considered in
Ref. [36] within the Landau Fermi-liquid model. It was
shown that, in the region of frequencies ω and wave vectors
q satisfying the inequality ω ≫ vFq (vF is the Fermi
velocity), the dynamics of the fluid is described by the
classical viscoelastic motion equations. A high-frequency
flow of a viscous 2D electron fluid in a long sample in zero
magnetic field was theoretically studied in Refs. [30,31].
The flow was shown to contain the plasmonic part formed
by plasmons and the viscoelastic part formed by transverse
zero sound [30,31]. The latter can be excited in a Fermi
liquids with a sufficiently strong interaction between
quasiparticles [37]. Transverse zero sound and plasmons
in 2D strongly nonideal Fermi liquids in the absence of a
magnetic field were considered in Refs. [32,33].
Hydrodynamic equations of high-frequency dynamics of a

2D electron fluid in a magnetic field were formulated in
Refs. [23,34,35]. It was shown that the ac viscosity coef-
ficients at the frequency ω, equal to the doubled cyclotron

frequency 2ωc, exhibit the viscoelastic resonance, originating
from the own rotation of the shear stress tensor in a magnetic
field [35]. The effects of viscosity on 2D magnetoplasmons
were studied in Ref. [34,35].
In this Letter, we predict transverse zero magnetosound

in a highly viscous (strongly nonideal) 2D electron fluid.
Such waves are related to perturbations of shear stress of a
charged Fermi liquid in a magnetic field. We use the
hydrodynamic approach, which is valid at a strong inter-
particle interaction [38], in order to calculate the dispersion
law of transverse magnetosound and the linear response of
the fluid to a radio-frequency electric field. In sufficiently
narrow samples, the response is formed predominantly by
the standing waves of transverse magnetosound at frequen-
cies ω > 2ωc and exhibits the viscoelastic resonance at
ω ¼ 2ωc. Depending on the sample width, the resonance
manifests itself in the ac conductance corresponding to the
linear response or, vice versa, in the ac impedance.
We discuss the giant peak in photoresistance and the

peculiarities in photovoltage that were recently observed in
ultrahigh-mobility GaAs quantum wells at the frequencies
near ω ¼ 2ωc [39–41]. The explanation [16] of the giant
negative magnetoresistance, discovered in similar GaAs
quantum wells [4–8], demonstrates that 2D electrons in
such structures form a viscous fluid. Here we provide the
evidences that the high-frequency magnetotransport phe-
nomena reported in Refs. [39–41] are explained by the
excitation of transverse magnetosound in the 2D electron
fluid. We also show that independence of the flow in
narrow samples on the sign of the circular polarization of
radiation, obtained in our theory, correlates with measure-
ments of photoresistance of similar structures [42–45].
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High-frequency hydrodynamics of 2D electron strongly
nonideal Fermi liquid.—A high-frequency flow of a 2D
electron fluid is described by the particle density nðr; tÞ ¼
n0 þ δnðr; tÞ and the hydrodynamic velocity Vðr; tÞ [here
r ¼ ðx; yÞ is the coordinate in the 2D layer and n0 is the
equilibrium density]. We decompose δnðr; tÞ andVðr; tÞ by
time harmonics proportional to e−iωt with the complex
amplitudes δnðrÞ and VðrÞ. In the regime linear by the
perturbation of the density and by the velocity, the con-
tinuity equation and the Navier-Stokes equation in a
magnetic field B ¼ Bez have the form [35]:

−iωδnþ n0divV ¼ 0; ð1Þ

−iωV ¼ eE=mþ ωcV × ez þ ηxxΔV þ ηxyΔV × ez; ð2Þ

where the hydrodynamic pressure term, −∇P=m, and the
bulk momentum relaxation term, −γV are omitted [46];
E ¼ EðrÞ is the complex amplitude of the time harmonic
of an ac electric field Eðr; tÞ, e and m are the electron
charge and mass, and the ac viscosity coefficients ηxx ¼
ηxxðωÞ and ηxy ¼ ηxyðωÞ are [35]

ηxx

ηxy

�
¼ η0

1þ ð−ω2 þ 4ω2
cÞτ2ee − 2iωτee

�
1 − iωτee
2ωcτee

: ð3Þ

Here η0 is the viscosity the absence of magnetic field and
τee is the electron-electron scattering time. If ω;ωc ≫
1=τee, then the viscosity coefficients (3) exhibit the
viscoelastic resonance at ω ¼ 2ωc [35].
The electric field Eðr; tÞ consists of the field of incident

radiationE0ðtÞ and the internal fieldEintðr; tÞ is induced by
a perturbation of the electron density δnðr; tÞ. We do not
consider the retardation effects that are important in the
region of small wave vectors in ungated structures (see
Refs. [57,58]). Thus for Eint we use the electrostatic
equation: Eint ¼ −∇δφ. For the structures with a metallic
gate located at the distance d from the 2D layer the
perturbation of the electrostatic potential is

δφ ¼ ð4πed=κÞδn; ð4Þ

where κ is the background dielectric constant.
A “true hydrodynamic” flow is characterized by the

almost equilibrium distributions of electrons by their
velocities in the coordinate systems moving with the
velocities Vðr; tÞ. Such a flow is described by the
Navier-Stokes equation (2) and is formed under the con-
dition that the interparticle scattering length lee ¼ vFτee is
the shortest spacescale. However, the hydrodynamiclike
description within Eq. (2) can be also applicable when a
fluid flow is driven by a high-frequency electric field with
the frequencies ω ≫ 1=τee and, therefore, the quasiequili-
brium distribution of electrons in the moving frame does
not have enough time to be formed. More precisely, if the

characteristic spacescale Δx of flow inhomogeneities is
much greater than the cyclotron radius, Rc ¼ vF=ωc, or the
path that a free electron passes during the period of E0ðtÞ,
lω ¼ vF=ω, the first and second angular harmonics domi-
nate in the distribution of electrons by velocities and Eq. (2)
turns out to be valid [2,16,36].
If the interaction between electrons is weak and electrons

can be regarded as an almost ideal Fermi gas, transverse
sonic waves, in which V⊥q, cannot propagate in the
system [37,59]. In this case the dc zero-field viscosity
coefficient η0 in Eq. (3) has the form η0 ¼ v2Fτee=4 [60].
Excitation of transverse zero sound becomes possible if

the interparticle interaction is sufficiently strong and 2D
electrons form a strongly nonideal highly viscous Fermi
liquid [37,59]. Dynamics of an electron Fermi liquid in the
absence of magnetic field was theoretically studied in
Ref. [36]. It was shown that the eigenmodes of the
Fermi liquid allow the hydrodynamiclike description pro-
vided by lω ≪ Δx. This inequality is surely realized for
transverse zero sound in a strongly nonideal electron liquid,
in which the parameter rs, characterizing the strength of the
Coulomb interaction, is much greater than unity [36].
The analysis [38], following Refs. [36,61,62], demon-

strates that, in a magnetic field, a strong interaction between
quasiparticles also justifies the applicability of hydrody-
namics for the description of the transverse eigenmode.
In Ref. [38], Eq. (2) was consistently derived from the
kinetic equation for strongly interacting Fermi-liquid
quasiparticles (the Landau interaction parameters F0

and F1 are much greater than unity). Herewith the value
of the viscosity coefficient η0 becomes proportional to
ð1þ F0Þð1þ F1Þ [38]; thus the parameter vηF ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0=τee

p
becomes much larger than the Fermi velocity vF.
For the structures investigated in Refs. [39–41], the

interparticle interaction parameter rs is about unity. The
recent experiments [63–66] evidence that the effective mass
of 2D electrons in similar high-mobility GaAs quantum
wells is substantially renormalized due to the interparticle
interaction. These two facts indicate that the conditions
F0;1 ≳ 1 or, even possibly, F0;1 ≫ 1 seem to be fulfilled for
2D electrons in the structures examined in Refs. [39–41]
and that the hydrodynamic model (1)–(4) is applicable for a
qualitative description of ac magnetotransport in them [67].
Formation of the linear response.—First, we study the

wave solutions of the hydrodynamic equations in the
absence of an external field E0ðtÞ.
Substitution of VðrÞ ¼ V0eiq·r and δnðrÞ ¼ δn0eiq·r

into Eqs. (1), (2), and (4) leads to the algebraic equations
for the amplitudes V0 and δn0 and for the eigenvalues
ω1;2ðqÞ (see their exact form in the Supplemental Material
[46]). We suppose that the parameters of the system satisfy
the inequalities presented in Table I. Apparently, such
conditions can be fulfilled, in some degree, for 2D ele-
ctrons in the best-quality samples of high-mobility GaAs
quantum wells. In this case, the largest (at q ≫ ωc=s) of the
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two eigenvalues ω1;2ðqÞ describes the magnetoplasmon
waves. Neglecting all the relaxation processes (1=τee → 0
and γ → 0), we obtain the well-known dispersion law
of magnetoplasmons: ωpðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ s2q2

p
, where

s ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πe2n0d=mκ

p
.

Damping of magnetoplasmons arises due to viscosity as
well as due to a finite bulk momentum relaxation with the
rate γ. At γ ¼ 0 the damping coefficient takes the following
form [35]:

ϒpðqÞ ¼
ω2
c þ ω2

p

2ω2
p

q2Reηxx þ
ωc

ωp
q2Imηxy: ð5Þ

Here the viscosity coefficients ηxxðωÞ and ηxyðωÞ are taken
at ω ¼ ωpðqÞ. The damping of magnetoplasmons due to
scattering on disorder in high-quality samples with a very
small rate γ is important only in the very vicinity of the
cyclotron resonance, jω − ωcj≲ γ [46].
The other of the eigenvalues ω1;2ðqÞ corresponds to the

magnetosonic waves, whose amplitude V0 is perpendicular
to the wave vector q. Such transverse waves are due to
perturbations of the shear stress tensor and are analogous to
transverse sound in amorphous solids. The dispersion law
of magnetosound ωsðqÞ and its damping coefficient ϒsðqÞ
originate from the time dispersion of the diagonal viscosity
ηxxðωÞ. At high frequencies, ωc, ω ≫ 1=τee, one obtains
the following [46] [see also Fig. 1(a)]:

ωsðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

c þ
ðvηFÞ2q2

4

r
; ϒsðqÞ ¼

4ω2
c þ ω2

s

2ω2
sτee

: ð6Þ

As it was discussed above, for applicability of the current
hydrodynamic approach one needs for vηF ≫ vF. Therefore
the magnetosound wavelength, having the order of magni-
tude ls ¼ vηF=ω at ωc ∼ ω, is much larger than the path that
a quasiparticle passes during one period of an ac field,
lω ¼ vF=ω. So we can consider the flows with the minimal
spacescale Δx as small as vF=ω ≪ Δx ≪ vηF=ω.
In order to study how magnetoplasmons and transverse

magnetosound can be excited, one needs to consider a
spatially nonuniform flow that is driven by an uniform ac
electric field E0ðtÞ in a finite-size sample. So, second, we
calculate the linear response of a fluid in a long sample on
an circularly polarized ac field E0ðtÞ ¼ E0e−iωt þ c:c:

[Fig. 1(b)]. Here E0;x ¼ E0=2, E0;y ¼∓ iE0=2, and the
signs “−” and “þ” correspond to the right and the left
circular polarizations. We suppose the longitudinal sample
edges to be rough that leads to the no-slip boundary
conditions: Vðy ¼ �W=2Þ ¼ 0.
From Eqs. (1)–(4) we obtain a system of linear differ-

ential equations for the complex amplitudes of the velocity
VðyÞ ¼ ½VxðyÞ; VyðyÞ� [46]. In the main order by the
parameter vηF=s ≪ 1, the solution of the equations is

VðyÞ ¼ eE0

2m
½A�

0 þ hðλp; yÞA�
p þ hðλs; yÞAs�; ð7Þ

where the first term A�
0 ¼ ½i;�1�=ðω̃� ωcÞ describes the

bulk Drude contribution, the second and the third terms
with the amplitudes A�

p ¼ �½iωc=ω;−1�=ðω̃� ωcÞ and
As ¼ ½−i; 0�=ω are the plasmonic and the viscoelastic
contributions, the value ω̃ ¼ ωþ iγ takes into account a
weak scattering on disorder, the function hðλ; yÞ ¼
coshðλyÞ= coshðλW=2Þ describes the profile of the flow,
the eigenvalue λp ¼ iqp − ωϒpðq ¼ qpÞ=ðs2qpÞ corre-

sponds to magnetoplasmons (qp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

c

p
=s is the

magnetoplasmon wave vector), and the eigenvalue λs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iω=ηxxðωÞ

p
corresponds to magnetosound.

If the parameters of the system satisfy the conditions
of Table I, the layers formed by magnetoplasmons
and magnetosound are separated in space and have the
widths Lp ¼ 1=jReλpj and Ls ¼ 1=jReλsj of the different

TABLE I. Values of the parameters allowing the formulated
hydrodynamic description.

Strong interparticle interaction: vηF ≫ vF
High-frequency regime: ωc ∼ ω ≫ 1=τee
Rigid spectrum of plasmons: s=vηF ≫ ωτee
Microscopically wide samples: W ≫ ω=vF
Weak bulk disorder: γ=ω ≪ ðvηF=sÞ2=ðωτeeÞ ω c
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FIG. 1. (a) Dispersion laws of magnetoplasmons ωpðqÞ and
transverse magnetosound ωpðqÞ. Dashed lines show the
dispersion laws in zero magnetic field: ω0

pðqÞ ¼ sq and ω0
sðqÞ ¼

vηFq=2 (here s ≫ vηF; see Table I). At q → 0 the frequency
ωsð0Þ ¼ 2ωc corresponds to the own rotation of the shear stress
tensor of the charged fluid in magnetic field. (b) Long sample in
the external fields E0ðtÞ and B in the regime ω > 2ωc ≫ 1=τee.
In wide samples, W ≫ Lp; Ls, the three regions are formed: the
central region (orange) where the flow is controlled by the bulk
momentum relaxation, the near-edge layers (dark-green) with the
widths Ls in which the flow is governed by viscosity, and the
regions Ls < jy −W=2j < Lp (red) where the magnetoplasmon
contribution dominates.
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orders of magnitudes [see Fig. 1(b) and the Supplemental
Material [46] ].
It is noteworthy that the viscoelastic part of Eq. (7) is

independent on the sign of the circular polarization.
From Eq. (7) we get the result for the complex amplitude

I ¼ ðIx; IyÞ ¼ en0
RW=2
−W=2 VðyÞdy of the ac current:

I ¼ e2n0E0W
2m

½A�
0 þ fpA�

p þ fsAs�; ð8Þ

where fp;s ¼ tanhðλp;sW=2Þ=ðλp;sW=2Þ.
Properties of the linear response.—Equations (7) and (8)

indicate that the Drude part of the flow dominates in very
wide samples, W ≫ Lp, while magnetoplasmons give the
main contribution to I in moderately wide samples, lp ≪
W ≪ Lp (lp ¼ s=ω is the characteristic wavelength of
magnetoplasmons). In the last case, the standing waves
of magnetoplasmons are formed in the y direction and the
viscoelastic resonance manifests itself via the width of
the magnetoplasmon resonances [see Eq. (5) and details in
the Supplemental Material [46] ]. In the current work, we
are mainly interested in the case of medium and narrow
samples, W ≪ lp, where the viscoelastic contribution pro-
vides a substantial or even the main contribution to the
linear response.
In medium samples, Ls ≪ W ≪ lp, at the frequencies

above the viscoelastic resonance, ω > 2ωc, the eigenvalue
λs is mainly imaginary. Correspondingly, the flow profile
VðyÞ in the near-edge regions, W=2 − jyj ≲ Ls, is the
standing waves of transverse magnetosound. Below the
resonance, ω < 2ωc, the eigenvalue λs becomes mainly
real. Thus the viscoelastic part of the flow acquires an
exponential profile and is located in the narrower near-edge
layers W=2 − jyj≲ ls, (here ls ∼ vηF=ω ≪ Ls is the char-
acteristic wavelength of magnetosound). Because of such a
change of the flow, the dependence IðωcÞ drastically
modifies at ωc ¼ ω=2 and the viscoelastic resonance arises
(Fig. 2). The absorbtion power W ¼ 2ReðE�

0IÞ exhibits a
peak, asymmetric relative to the point ωc ¼ ω=2 [46]:

WðωcÞ ∝ Re

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i − ð2ωc − ωÞτee
p

!
: ð9Þ

In narrow samples, ls ≪ W ≪ Ls, the standing waves of
magnetosound are formed in the whole sample at ω > 2ωc.
In this case the plasmonic contribution is relatively small.
When the sample width is equal to a half-integer number of
magnetosound wavelengths, W ¼ ð2mþ 1Þπ=qsðωcÞ, res-
onances at ωc ¼ ωs;m

c , related to amplification of the
standing magnetosound waves, appear in the dependence
WðωcÞ [see Eq. (8) and Fig. 2; qs ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4ω2

c

p
=vηF is

the magnetosound wave vector].
In narrowest samples, W ≪ ls, the velocity amplitude

VðyÞ has a parabolic profile in a whole sample [see Eq. (7)].

This regime can be regarded as a high-frequency Poiseuille
flow in magnetic field. The viscoelastic resonance
manifests itself not in the current, but in the ac impedance
Z ¼ E0=Ix. Near the resonance Eq. (8) yields the
Lorentzian profile of the real part of the impedance:

ReZðωcÞ ∝
1

1þ ð2ωc − ωÞ2τ2ee
: ð10Þ

At ωτee ≫ 1 the imaginary part of the current (8) does not
depend on any relaxation parameter [46]. This corresponds
to ac field–induced elastic oscillations of the highly viscous
electron fluid (“electron honey”), glued to the longitudinal
sample edges at y ¼ �W=2.
Manifestation of the viscoelastic resonance in nonlinear

effects.—In high-mobility GaAs quantum wells, bright
surprising effects were observed at the frequencies near
ω ¼ 2ωc in nonlinear ac magnetotransport: a strong peak in
photoresistance [39,40], and a peculiarity in the photo-
voltaic effect [41]. Below we present the arguments that the
viscoelastic resonance is responsible for these effects.
It was stressed in Ref. [39] that the strong peak (“spike”)

in photoresistance and a very well pronounced giant
negative magnetoresistance are observed in the same
best-quality GaAs structures. In Ref. [16] the giant negative
magnetoresistance was explained as a manifestation of
forming a viscous flow of a 2D electron fluid. Thus
peculiarities in any ac transport effect in those structures
near the frequency ω ¼ 2ωc, actually observed in experi-
ments [39–41], must inevitably have an explanation within
the hydrodynamic model.
In Ref. [41] the photovoltage effect was measured on

several GaAs quantum well structures of different geom-
etries. The peculiarity at ω ¼ 2ωc was much better
observed in the sample having a meander-shaped gate,
compared with the uniformly gated and the ungated
samples. Apparently, the meander-shaped gate induces

FIG. 2. Absorbtion power W as a function of ωc at fixed ω for
medium and narrow samples with the widths W=lee ¼ 5.7, 3.2,
1.8 (orange, blue, and red curves) at ωτee ¼ 50 and s=vηF ¼ 300.
Inset presents the imaginary part of the ac current IxðωcÞ for a
medium sample (W=lee ¼ 1.8). The viscoelastic resonance at
ωc ¼ ω=2 for all curves and the “magnetosonic resonances” at
ωc ¼ ωs;m

c for red curves are seen.
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inhomogeneous perturbations of an electron flow. Thus, in
the meander-gated sample the role of shear stress and
viscosity must be greater than in the other samples and the
viscoelastic resonance is expected to be more pronounced,
as it was actually observed.
There can exist various versions of the hydrodynamic

theories of the photoresistance and the photovoltaic effects
[46], in which the nonlinear response originates from
different sources of nonlinearity. In any case, a nonlinear
response contains a linear response as a block and, thus,
must exhibit the peak or another peculiarity at ω ¼ 2ωc.
We have shown in this work that the peak of the viscoelastic
resonance in the linear response can be asymmetric as well
as symmetric, depending on the sample width. Both these
two types of the peak, apparently, were observed in
photoresistance in Refs. [39,40] on different samples.
In the experiments [42–45] it was demostrated that

photoresistance of high-mobility GaAs quantum wells is
usually almost independent of the sign of circular polari-
zation of radiation at ωc ≲ ω. Although the giant peak in
photoresistance was observed up to now only for the linear
polarization of ac field, the independence of the viscoelastic
part of the linear response (8) on the sign of the circular
polarization and our analysis of the results of experiments
[42–45] correlates with the statement that the peak has the
hydrodynamic origin (see the Supplemental Material [46]).
Conclusion and acknowledgments.—We have pointed

out that transverse magnetosonic waves, accompanied by
the viscoelastic resonance, can be excited in a highly
viscous electron fluid and, apparently, have been observed
in GaAs quantum wells in experiments [39–41].
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