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The propagation of electrons in an orbital multiplet dispersing on a lattice can support anomalous
transport phenomena deriving from an orbitally induced Berry curvature. In striking contrast to the related
situation in graphene, we find that anomalous transport for an L ¼ 1 multiplet on the primitive 2D
triangular lattice is activated by easily implemented on site and optically tunable potentials. We
demonstrate this for dynamics in a Bloch band where point degeneracies carrying opposite winding
numbers are generically offset in energy, allowing both an anomalous charge Hall conductance with the
sign selected by off-resonance coupling to circularly polarized light and a related anomalous orbital Hall
conductance activated by layer buckling.
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The Berry curvature in a band structure can manifest in
response to applied fields by inducing an anomalous
velocity in the equations of motion for a wave packet
[1–6]. A prototype of this effect can be found on the well-
studied honeycomb lattice [7,8]. However, physical reali-
zations of this model present an essential complication in
practice. At half filling, the band structure has point
degeneracies protected by PT symmetry that carry oppo-
site winding numbers. Breaking these symmetries to gap
this spectrum liberates a Berry curvature into the Brillouin
zone but its integrated strength vanishes unless the mass
parameter also has a valley asymmetry that compensates
the sign change of the winding number. This k dependence
inevitably requires site nonlocality in the mass terms [7,8]
that is difficult to experimentally implement [9,10]. A
notable work-around occurs in two-dimensional (2D)
transition metal dichalcogenides where inversion symmetry
is broken, and the spectrum is instead gapped by a valley-
symmetric mass [11]. In this case, anomalous charge
transport can be activated by a valley asymmetry in the
nonequilibrium population of optically excited carriers
[11–14].
In this Letter, we consider a different approach to

engineer the Berry curvatures that induce both charge
and angular momentum anomalous Hall responses using
purely local potentials in simple Bravais lattices with
minimal symmetries, and propose possible experimental
signatures using a representative triangular lattice. Our
model is sufficiently generic that conclusions derived from
it are expected to hold in many similar systems. We are
motivated by a recent work on a two-dimensional Cu2Si
that hosts symmetry-protected line degeneracies without
support from any sublattice symmetry and with negligible
spin-orbit coupling [15], which we also assume throughout

our work. Band degeneracies in the model arise from an
on-site L ¼ 1 orbital multiplet and are lifted by dispersion
on the lattice. Unlike the situation on the honeycomb
lattice, here the winding number around the point nodes is
valley symmetric, and the net winding over the composite
manifold is compensated by point degeneracies enforced
elsewhere in the band structure. In this situation, regions of
momentum space carrying compensating Berry curvatures
are spectrally separated. Thus, we can suppress the com-
peting contributions of the Berry curvature to the anoma-
lous Hall conductance (AHC) by a judicious choice of
chemical potential. We demonstrate this effect on the
triangular lattice by gapping out the time-reversal-
symmetric point degeneracies via coherent coupling of
the lattice to circularly polarized light. We find that the
magnitude of the gap can be “resonantly” enhanced by
the frequency of the field. We estimate that the mass
gap of a typical material on the order of 100 meV can be
achieved by optical fields in the wavelength range of
0.1–1.15 μm with experimentally accessible intensities of
103–105 W=μm2. A wide tunable gap means that the
anomalous Hall effect in such a system should be exper-
imentally detectable in a large range of chemical potentials.
Next, we utilize the orbital degree of freedom to propose

an anomalous orbital Hall effect that can be activated by
layer buckling [16,17]. This is a transverse current to an
applied field where the orbitals are polarized in the out-of-
plane direction. To observe this effect, we need to break
time-reversal symmetry and mirror symmetry across
the lattice plane to hybridize the m ¼ �1 multiplets with
the m ¼ 0 singlet. We demonstrate this effect on the
triangular lattice by calculating the anomalous orbital
Hall conductance (AOHC) in the presence of a mirror-
breaking perturbation. Similar phenomena should be
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ubiquitous in band structures which disperse an orbital
multiplet, where there are degeneracies protected by mirror
symmetry that can be lifted via, for instance, layer buck-
ling. Examples of recently isolated 2D layers that host these
mirror-protected line nodes include Cu2Si, CuSe, and AgTe
[15,18,19]. With the recent surge in experimental interest in
mirror-protected fermions, we expect our generic model
to find applicability in a wide number of experimental
platforms.
Our lattice model derives from the propagation of an

L ¼ 1 orbital multiplet on a triangular lattice, as illustrated
in Fig. 1(a). We consider a tight-binding model where each
lattice site consists of three p orbitals, and allow only
nearest-neighbor hoppings. The orbitals can be equiva-
lently represented in the axial basis as pþ1, p0, and p−1, or
in the Cartesian basis as px, py, and pz. In either
representation, the Bloch Hamiltonian at crystal momen-
tum k ¼ ðkx; kyÞ can be partitioned into

ĤðkÞ ¼ h0ðkÞÎ þ hcðkÞl̂z · l̂z þ hðkÞ · L̂; ð1Þ

where, as defined in the Supplemental Material [20], h0ðkÞ
is a scalar coupling, hcðkÞ is a crystal field, hðkÞ ¼
ðh1ðkÞ; h2ðkÞÞ is a vector coupling to the orbital degree
of freedom, L̂ ¼ ð½l̂x · l̂x − l̂y · l̂y�; ½l̂x · l̂y þ l̂y · l̂x�Þ. The
scalar term describes the average dispersion of the orbital
multiplet, and the crystal field distinguishes states that are
even and odd under reflection through the lattice plane.
Important quantum geometry is contained in the last term
of Eq. (1) that couples the orbital polarization to an
effective k-dependent ordering field.
It is straightforward to verify that the Hamiltonian

respects sixfold rotation symmetry of the lattice and
also respects time-reversal symmetry T . Furthermore, the
in-plane subspace (px, py, or p�) is decoupled from the

out-of-plane subspace (pz or p0). This is a consequence of
mirror-reflection symmetry about the x-y mirror plane that
maps ðx; y; zÞ ↦ ðx; y;−zÞ. As emphasized in Ref. [15],
intersections between energy surfaces in the z-mirror even
and odd sectors are nodal lines that are twofold degenerate
in the absence of spin-orbit coupling [Fig. 1(b)]. Because of
this decoupling, we can project the Hamiltonian to just the
mirror-even sector for analysis of a two-band model. In the
axial representation, the projected Hamiltonian can be
written in the chiral form

P̂−1ĤaxiðkÞP̂ ¼ (h0ðkÞ þ hcðkÞ)Î þ ĥeðkÞ ð2Þ

where P̂ is the mirror-even projection operator,

ĥeðkÞ ¼
�

0 dðkÞ
d�ðkÞ 0

�
; ð3Þ

and dðkÞ ¼ h1ðkÞ − ih2ðkÞ, where h1ðkÞ and h2ðkÞ are
defined in the Supplemental Material [20]. Here, the σz
term is forbidden by the composite T C2z symmetry. This
feature distinguishes the primitive lattice model from its
honeycomb counterpart where the “bare”C2z rotation is not
a symmetry of the tight-binding Hamiltonian and instead is
supplemented by the sublattice exchange operation σx.
Band degeneracies in the Hamiltonian (3) impose simulta-
neous null conditions on the real and imaginary parts of
dðkÞ, which can occur only at exceptional points in two
dimensions. Threefold rotational symmetry pins these
points to high-symmetry momenta Γ, K, and K0 where
the small groups admit two-dimensional irreducible rep-
resentations [Fig. 1(c)]. Near the KðK0Þ points, the degen-
eracy is lifted to linear order in momentum, while it is lifted
to quadratic order at the Γ point.

FIG. 1. (a) Model for the propagation of an L ¼ 1 orbital multiplet on a triangular lattice. Here, T̂ is the hopping operator,Ec denotes a
circularly polarized optical field, and J and Jo are the charge and orbital responses to an applied transverse E field. (b) Energy surfaces
for bands that are even (odd) under z reflection shown in yellow (green). Surfaces with opposite mirror eigenvalues intersect on line
nodes (projected red and purple lines). Twofold degenerate point nodes are shown as black and blue points with a quadratic contact at the
zone center (black) and linear band contacts the zone corners (blue). (c) The dispersion of the composite bands along symmetry
directions in a model with T symmetry (dashed) and with a T -breaking potential (solid). Blue points denote the intersection of the nodal
lines with the plane of the figure, and red points are twofold degeneracies pinned to high-symmetry points. Simulation parameters are
given in [20]. All energies are scaled relative to W, the bandwidth at Γ.
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Although the linear nodes at K and K0 are reminiscent of
the situation in graphene, here its geometric character is
entirely different. This is because, as mentioned above, C2z
without basis exchange is a symmetry of the triangular
lattice. This requires the phase winding of the Bloch bands
around the valley singularities to be the same. T symmetry
requires the net winding number integrated over the full
orbital manifold to vanish, and this is accomplished by a
compensation from the quadratic node at Γ. Figure 2
illustrates this point by comparing the winding of
arg½dðkÞ� for the honeycomb lattice (left), where there is
a branch cut that connects the K and K0 points, and for the
m ¼ þ1 manifold on the triangular lattice (right), where
there are two branch cuts each linking a zone corner to the
second-order node at Γ.
The symmetry of the phase profile in Fig. 2 allows

anomalous transport to be activated while retaining a
valley-symmetric population in the presence of local
and spatially uniform mass terms. Perhaps the simplest
possibility is to augment the Hamiltonian of Eq. (3) with a
k-independent coupling εσz that breaks the degeneracy of
the m ¼ �1 basis states, as detailed in [20]. Physical
realizations include a ferromagnetic state with coupling
between the magnetization and the on-site orbital moments
or (as described below) coherently driving the orbital
degrees of freedom with a circularly polarized optical
field.
The effects on the band structure are shown in Fig. 1(c)

where the band degeneracies are lifted atOðεÞ at the KðK0Þ
and Γ points. Figure 3(a) gives a density plot of the
distribution of the Berry curvature in the occupied states
when the chemical potential is tuned to middle of the K-
point gaps, showing “hot regions” near the zone corners. In
weak coupling, ε < Δ, where Δ is the energy difference
between KðK0Þ and Γ, the bands overlap and the integra-
ted Berry curvature near the zone corners is partially
screened by the compensating curvature that is peaked

in the higher-energy states near the Γ point [22]. The AHC
varies continuously with band filling and is given by

σαβ ¼
e2

ℏ

X
n

Z
BZ

d2k
ð2πÞ2Ωαβ;nðkÞΘ(μ − εnðkÞ); ð4Þ

where ΘðxÞ is the Heaviside step function, representing the
Fermi-Dirac occupation function at zero temperature, μ is
the chemical potential, the antisymmetric Berry curvature
tensor for the nth band with Bloch state junðkÞi and energy
εnðkÞ is given by

Ωαβ;nðkÞ
2ℏ2

¼
X
m≠n

Im

�hunðkÞjvαjumðkÞihumðkÞjvβjunðkÞi
(εnðkÞ − εmðkÞ)2

�
;

ð5Þ

and vα ¼ℏ−1∂kαH is the band velocity operator. Figure 4(b)
shows the AHC as μ is swept through the spectrum. It
switches from particle- to holelike response as a function of
the band filling, reflecting the proximity to the nearest
sources or sinks of Berry flux; additionally, a plateau occurs
when μ lies within the K-point gaps, where the value of the
Hall conductance saturates at a value σxy < e2=h because
of partial screening from the curvature from the higher-
energy Berry sinks. In the extreme weak-coupling limit
ε ≪ Δ, this compensation is negligible and σxy sharply
peaks at ∼e2=h in a narrow range of μ. With the chemical
potential in the K-point gap, the AHC can also be under-
stood in an edge-state picture [Fig. 4(a)] where quantized
transport through edge channels is partially screened by
backflow through bulk states that carry a residual curvature.
The anomalous Hall response can be activated by

coherently driving the system with a perpendicular circu-
larly polarized optical field at normal incidence which
breaks T symmetry and lifts band degeneracies at the Γ and

FIG. 2. Density plots of arg½dðkÞ� for tight-binding Hamilto-
nians of a scalar field on the honeycomb lattice (a) and for the
mirror-even states on the L ¼ 1 triangular lattice (b). In (a), a
branch cut connects point singularities at time-reversed points K
and K0. In (b), time-reversed zone-corner singularities carry the
same winding number, and connect to a compensating second-
order node at Γ.

FIG. 3. Density plots of the occupation-weighted Berry curva-
ture defined by the summand in Eq. (4) (a) and the occupation-
weighted orbital Berry curvature defined by the summand in
Eq. (8) (b) when band degeneracies are lifted by uniform local
T -breaking fields. In (a), T symmetry is broken by coherent
coupling to an optical field. In (b), z-mirror even and odd sectors
hybridize, replacing nodal lines by a quartet of linear point
degeneracies. Simulation parameters are given in [20]. The color
scales are given in units of a2, where a is the lattice constant.
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KðK0Þ points. Since this field carries integer angular
momentum, in lowest order, it hybridizes the mirror-even
and mirror-odd bands; integrating out the latter induces
an effective orbital Zeeman field εðkÞσz seen in the
mirror-even subspace. To estimate its size, we couple the
optical field to the on-site moments and calculate the mass
term, as derived in [20] to be

εðkÞ ¼ e2E2
0p

2ℏω
2(hcðkÞ2 − ℏ2ω2)

; ð6Þ

which is second order in the driving field E0, linear in the
driving frequency ω, and controlled by the strength of the
interorbital matrix element p. This mass can be resonantly
tuned by adjusting the driving frequency through the crystal
field scale. To estimate the size of this effect, we take
representative parameters for a typical material, hc ≈ 1 eV
and p ¼ 1 Å, achieving a mass scale ∼100 meV in the
wavelength range 0.1–1.15 μm (resonance is at 1.24 μm)
requires peak intensities in the range 103–105 W=μm2,
which is accessible to currently available sources.
The orbital degree of freedom also allows the possibility

of an angular-momentum current where an anomalous flow
of orbital angular momentum, with or without charge, is
directed perpendicular to an applied in-plane electric field
[16,17]. A natural choice for the angular-momentum
current operator is jðαÞβ ¼ ðℏ=2Þflα; vβg. However, because
the angular-momentum operators lα do not commute with
the Hamiltonian, such a current operator does not satisfy a
continuity equation. Instead, in the regime where one is
probing low-frequency dynamics with a period much larger
than the interband dephasing time, we can use a band-
projected version where lα is replaced by

P
n Pk;nlαPk;n,

and Pk;n ¼ junðkÞihunðkÞj is the projection operator. This
operator projects the angular-momentum operators onto the
diagonal elements of the density matrix, and clearly

commutes with the Hamiltonian. In this low-frequency
regime, we can write the angular-momentum current
operator as [23]

jðαÞβ ¼ ℏ
2

X
n

fPk;nlαPk;n; vβg ð7Þ

to describe a current flowing in the β direction with angular
momentum polarized along the α direction. The anomalous
orbital transport coefficient derived from jαβ is purely

transverse, leading to JðzÞα ¼ σðzÞαβEβ, where σðzÞαβ contains
an angular-momentum-weighted curvature

σðzÞαβ ¼ e
X
n

Z
BZ

d2k
ð2πÞ2Ω

ðzÞ
αβ;nðkÞΘ(μ − εnðkÞ); ð8Þ

where the angular-momentum-weighted curvature is [24]

ΩðzÞ
αβ;nðkÞ
2ℏ

¼
X
m≠n

Im

�hunðkÞjjðzÞα jumðkÞihumðkÞjvβjunðkÞi
(εnðkÞ− εmðkÞ)2

�
:

ð9Þ

We note that the orbital curvature defined in Eq. (9) is
reminiscent of the charge curvature in Eq. (5) with the
charge current operator replaced by the angular momentum
current operator. For the special case of a two-band model
where the band-projected angular momenta hlzi exactly
cancel, the AOHC in Eq. (8) vanishes. In our model, it is
activated by breaking z-mirror symmetry which hybridizes
the in-plane and the out-of-plane orbital polarizations, as
detailed in [20]. This can be accomplished via layer
buckling. Figure 3(b) shows the distribution of an orbital
Berry curvature produced by a potential which retains
a y-mirror symmetry but breaks the horizontal mirror
symmetry by mixing x- and z-orbital polarizations. This

FIG. 4. (a) Band dispersion for a ribbon of the triangular lattice showing the projections of the bulk bands (gray) and confined edge
modes inside the bulk gaps (red and green). (Inset) The K point gaps host counterpropagating states on opposite edges of the ribbon.
(b) The anomalous Hall conductance in the presence of a T -breaking potential evolves from a particlelike to a holelike response as a
function of band filling μ. Plateaus occur when the chemical potential is tuned within the induced gaps at the K and Γ points.
(c) Breaking z-reflection symmetry activates an orbital Hall conductance describing a transverse angular-momentum current driven by
an in-plane electric field. The orbital response is strong in two sharp spectral features where the orbital current is correlated/
anticorrelated with the charge current. Simulation parameters are given in [20].
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lifts the line-node degeneracy except for a quartet of
exceptional band contact points. The orbital curvature is
largest at momenta where in-plane and out-of-plane polari-
zations are optimally mixed. Figure 4(c) shows the charge
and orbital Hall conductances calculated in this three-band
model as a function of μ. The broken symmetry activates
the AOHC seen in two sharply defined spectral features
where the in-plane and out-of-plane degrees of freedom are
most strongly mixed. These modes describe anomalous
transport of charge and angular momentum that are
correlated (anticorrelated) in the lower (upper) bands.
Interestingly, we find that in the strong-coupling limit
where the spectrum is fully gapped, the AHC vanishes
but the residual AOHC retains nonzero plateau representing
a pure flow of angular momentum with no concomitant
flow of charge. Experimentally, the orbital Hall effect is
established in a two-dimensional system by measuring the
out-of-plane angular-momentum polarization of the trans-
verse current to an applied field.
Related phenomena can be expected in other situations

where the propagation on a lattice disperses an orbital
degree of freedom [25]. Although our study is motivated by
the band topology in Cu2Si [15], this material is not optimal
for this application because the relevant Si 3p–derived
bands overlap with Cu 3d states, obscuring some of the
most interesting singularities in the active band manifold.
One expects that this obstacle can be circumvented by a
judicious choice of cations in related materials. Recently,
2D lattices of CuSe and AgTe have been successfully
fabricated and characterized. The lattice structure of these
materials has a triangular sublattice and has been shown to
host fermion line nodes that are protected by mirror
symmetry in the absence of spin-orbit coupling [18,19].
Importantly, since the orbital connection does not rely on
spin-orbit coupling, our approach can immediately be used
to support topological transport in systems containing only
light elements. We note that previous theoretical work
along these lines considered a 2D variant of this model
where the in-plane orbital degrees of freedom are instead
coupled on the two-site basis of a honeycomb lattice,
showing that it can realize an orbital analog of the quantum
anomalous Hall effect [26] and even realizations on optical
lattices [27]. The use of an on-site vector degree of freedom
along with broken T symmetry lends itself naturally to
topological mechanical systems in a driven state designed
to break reciprocity [28]. We also note that the model
derived here for describing the lattice propagation of an
integer-quantized orbital multiplet is (absent the crystal
field splitting) a 2D variant of a 3D model that possesses
point nodes for J ¼ 1 lattice fermions [29]. Spin-orbit
coupling on the triangular lattice can also lead to other
topological phases such as the quantum spin Hall effect [30].
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